Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
Trachoma is a disease of poverty, which in the hyperendemic areas affects all individuals by the time they are two years old. Active disease is concentrated in children and occurs sporadically in adults. Infection is more widespread. It is anticipated that 25% of the children will be blinded by this disease if they live to be 60 years of age. The blindness rates are higher in women, presumably because of their closer contact with children who can infect them and add to damage from infections the women had while young.
This proposal is to better define how azithromycin in community-based treatment can be used to eliminate blinding trachoma. We will also take the opportunity to join these field studies with genetic epidemiologic studies to better understand the dynamic epidemiology of Chlamydia trachomatis infection in a trachoma endemic area. The empiric data generated from the treatment/follow-up studies, together with the information on sources and spread patterns from genetic epidemiology will be used to generate more robust models to guide future treatment/re-treatment protocols.
We propose to conduct a randomized, community based trial in the Maradi region of Niger to test the hypothesis that two community wide azithromycin treatments, spaced one month apart, are significantly more effective in reducing ocular C. trachomatis infection and trachoma at one year compared to a single mass azithromycin treatment.
Full description
Population
We will take advantage of the ongoing work in the ten villages currently being studied in Kornaka West. They have never had mass treatment with azithromycin, and the baseline trachoma and infection rates are greater than 20%. The final survey for that current study will occur in January, 2008. Within villages, we will use the updated complete village census lists generated in the January 2008 survey. The children for that survey were randomly selected from the baseline census to provide a sample of approximately 50-60 children in the village ages 0 to five years. They are now a cohort of children ages 2 to 7 years. We propose to add approximately 15 children ages 0-2 from the updated census list for a total of 65-70 children per village.
Sample
We propose to re-randomize the villages, stratified by baseline trachoma rates and former intervention, into treatment intervention (2 rounds of mass treatment) and control (one round of mass treatment) arms. The villages will be balanced by baseline trachoma rates and the original randomization to water and sanitation interventions. Within villages, we propose to use the same sample of children ages 2-7 years and add a random sample of 15 children ages 0 to 2 years.
It will also be important to determine the effect of the two mass drug administration arms on infection in adults, so we propose to randomly select one adult from each household where there is an index child. If the adult is out of the village at the time of the survey, then the next randomly assigned adult will be selected for the study.
Statistical plan including sample size justification and interim data analysis
We intend to analyze the data starting by determining comparability of sample children and adults in intervention and control villages. Village characteristics, household characteristics, and age and gender distributions will be compared by intervention and control status. Importantly, baseline assessment of trachoma, and C. trachomatis infection, will be used to assure comparability. Variables that differ will be used as potentially confounding factors. We will determine the change from baseline to one month and one year in the trachoma prevalence and prevalence of C. trachomatis in the sentinel sample, stratified by children and adults. We will compare the average prevalence in the intervention villages compared to the control villages, by way of preserving the unit of randomization. We will then use logistic regression models to predict trachoma/infection at each time point, adjusting for clustering within villages and other confounding factors. Coverage of mass treatment will also be included as a predictor of trachoma/infection.
We use our sample of children to estimate power, as they are the risk group with highest rates of infection and trachoma. With our sample size of 350 children per group, we have 80% power (at α=0.5) to detect a 15% difference in decline in active trachoma or infection, assuming modest village level clustering.
We will sample 140 subjects per village (70 children plus one randomly selected adult from the same household) for a total of 1400 subjects. Subjects will be sampled at baseline, one-month post-treatment, and at one-year post-treatment.
Prior to the surveys, a training program will take place to accomplish the following objectives for the survey team:
The Baseline survey for trachoma in the sample of children and adults will take place prior to any antibiotic intervention. The surveys will consist of the following steps:
The same sample of children and adults will be surveyed for trachoma and infection at one month post the last treatment, and at one year. No additional persons will be added to the sample to replace any who have died or moved away, as we will not have baseline data for any replacements. The procedures for the one month and one year follow up surveys are exactly the same as for the baseline survey, except the following: the laboratory label is changed from a "B" to a "1" or a "2" as the first part of the label, and the survey forms are entered into the one month or one year data bases.
All positive specimens will have the major outer membrane gene amplified and sequenced. The genovars will be mapped for location within villages and families and then their distribution will be followed over time, after treatment to provide a better understanding of the epidemiology of the infection. Results of the study will be used as data input for the generation of mathematical models to predict whether community-wide retreatment (or alternate strategies) will be needed, and the optimal timing for such retreatment.
Enrollment
Sex
Volunteers
Inclusion and exclusion criteria
Subjects live in a village in Niger that exhibits a high prevalence of clinically active trachoma (>15%) amongst the children living in that village. This prevalence of clinical disease is a marker for much higher infection rates, thus justifying community wide treatment.
Inclusion Criteria:
Exclusion Criteria:
All subjects meeting any of the exclusion criteria will be excluded from study participation. Exclusion criteria include:
Primary purpose
Allocation
Interventional model
Masking
1,139 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal