Status
Conditions
About
This study will determine if applying electrical stimulation of the brain can influence training to perform finger movements. The study may provide information that can be used to design rehabilitation therapies for people who have lost the ability to move a part of their body, such as an arm, leg, or hand following a stroke.
Healthy volunteers 18-50 years of age may be eligible for this study. Candidates are screened with a medical history, physical examination, MRI (if one has not been done within the last year), questionnaire to evaluate memory and attention and a pregnancy test for women who can become pregnant.
Participants have the following tests and procedures in seven sessions over about 8 weeks:
Full description
OBJECTIVES:
Training leads to performance improvements and motor learning. Cortical plasticity associated with training (use-dependent plasticity, UDP) contributes to performance improvements after brain lesions such as stroke. Recently, several interventional strategies have been proposed to enhance UDP, including pharmacological approaches and brain stimulation. The magnitude of improvements identified with these techniques is limited. It would be very useful to enhance UDP beyond the limited effects of previously proposed interventions.
One strategy recently proposed to enhance the effect of brain stimulation techniques on the cerebral cortex is metaplasticity. This strategy focuses on the purposeful manipulation of cortical activity before applying brain stimulation. For example, previous work demonstrated that the magnitude of increase in cortical excitability elicited by stimulation of the primary motor cortex (M1) is more prominent if stimulation is applied on a hypoactive M1. An initial down-regulation of M1 activity (i) amplifies the effect of a subsequent intervention that increases M1 activity, and (ii) reduces inter-individual variability.
It is unknown if this metaplasticity strategy can enhance the beneficial effects of anodal tDCS (tDCS anodal) on training effects as it does with cortical excitability, an issue of scientific and clinical interest, and the overall hypothesis of this protocol.
Here, we will test the hypothesis that metaplasticity (tDCS cathodal) followed by tDCS anodal plus motor training will result in more prominent UDP than control interventions.
STUDY POPULATION
6 healthy adult volunteers for parameters estimation plus 25 healthy adult volunteers (total = 31 healthy adult volunteers)
DESIGN
In this protocol, down-regulation of M1 activity will be accomplished by applying tDCS cathodal, a tool extensively described in the literature to induce this effect. Therefore, we will test the effects of this metaplasticity intervention on the beneficial action of tDCS anodal to M1 in combination with motor training (MT). After a familiarization session, subjects will participate in 6 randomized sessions in a cross-over design:
MT will consist of brisk repetitive thumb movements in a direction opposite to the baseline direction of thumb movements evoked by focal transcranial magnetic stimulation (TMS), in a well-characterized UDP protocol.
The primary outcome measure reflecting the encoding of a motor memory will be the increased proportion of TMS-evoked movements falling within the target training zone (TTZ) as a function of MT and metaplasticity interventions.
Sex
Ages
Volunteers
Inclusion and exclusion criteria
EXCLUSION CRITERIA:
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal