Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
Achieving near-normoglycemia has been established as the main objective for most patients with diabetes. However, postprandial glucose control is a challenging issue in everyday diabetes care. Indeed, excessive postprandial glucose excursions are the major contributors to plasma glucose (PG) variability in subjects with type 1 diabetes (T1DM). In addition, the poor reproducibility of postprandial glucose response is burdensome for patients and healthcare professionals.
Automatic glucose control, the so-called artificial pancreas or closed-loop system, may represent the ideal solution for reaching the therapeutic goals in diabetic patients. Intuitively, closed-loop insulin delivery may be superior to open-loop insulin delivery due to a better compensation of the variability of subcutaneous insulin absorption and the intra-subject insulin sensitivity. However, several challenges exist to effectively realize an optimal postprandial closed-loop control of blood glucose. Indeed, the eating process induces one of the major glucose perturbations that need to be controlled by an artificial pancreas and is currently one of the main challenges found in clinical validations of the few existing prototypes of an artificial pancreas. In particular, experiments carried out with the currently used algorithms for glucose control (the so called PID and MPC) showed that closed-loop insulin delivery often tend to overcorrect hyperglycemia thus increasing the risk hypoglycemia.
In this project, a rigorous clinical testing of a novel closed-loop controller ('artificial pancreas') will be carried out in T1DM patients treated with continuous subcutaneous insulin infusion (CSII). The innovative element of the controller is a safety auxiliary feedback based on sliding mode reference conditioning (SMRC), which has been demonstrated (in simulation studies) to limit over-insulinization and the resulting hypoglycemia, reducing glycaemic variability.
Standardized meal test studies will be performed in T1DM subjects treated with CSII, comparing the administration of a classical bolus (open-loop study) with a controller-driven prandial insulin delivery (closed-loop study) based on continuous subcutaneous glucose monitoring (CGM).
The hypothesis is that closed loop control will provide better postprandial control, especially in terms of reduction of glucose variability and incidence of hypoglycemia.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
20 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal