Status
Conditions
Treatments
About
The goal of this prospective interventional crossover randomized physiological study is to investigate the reliability of Pressure Muscle Index (PMI) - as an estimation of inspiratory effort - at different levels of expiratory cycling during pressure support ventilation. PMI will be compared with the esophageal pressure swing that is considered the gold standard technique.
This study aims to answer to the following questions:
Full description
The concept of Patient-Self-Inflicted Lung Injury (P-SILI) defines the injury that a patient may cause to the lungs while exerting strong inspiratory efforts. During assisted spontaneous breathing, the alveolar distending pressure results from both the positive pressure delivered by the ventilator and the negative pressure generated by the patient. If the patient generates very low negative pleural pressure (Ppl), this may result in an elevated alveolar distending pressure (i.e. transpulmonary pressure). The assessment of esophageal pressure (Pes) - as a surrogate of Ppl - allows to estimate the transpulmonary pressure. However, oesophageal pressure monitoring is not commonly used across different Institutions and it is not often the standard of care to estimate the inspiratory effort and transpulmonary pressure. A manual inspiratory hold is a bedside available tool to potentially estimate a safe threshold of airway pressure, as it can reliably estimate plateau pressure (Pplat) during assisted mechanical ventilation and driving pressure (DP). The difference between peak (Ppeak) and plateau pressure (Pplat) during pressure support ventilation results in the pressure muscle index (PMI) which is considered a reliable measurement of the elastic contribution of patient's inspiratory effort. This index is a simple bedside tool able to uncover the "hidden pressure" that the patient generates during pressure support ventilation and it tightly correlates with the muscular pressure at end inspiration measured by a Pes catheter. Nowadays, in most ventilators, percentage of the peak flow can be adjusted from as low as 1% to as high as 80% resulting in longer or shorter inspiratory times, respectively. Therefore, Pplat can be equal or lower that Ppeak in the absence of inspiratory effort. In the presence of an inspiratory effort, after a manual inspiratory hold, the pressure generated by the patient will be released and the level of Pplat may be visible above Ppeak to an extent that may change based on the set expiratory cycling. We therefore aim to verifying whether pressure muscle index (PMI) - obtained by the pressure time waveform on the ventilator and used as an estimation of the inspiratory effort - is differently correlated with esophageal pressure swing (i.e. gold standard to describe the inspiratory effort) by changing expiratory cycling at different levels of pressure support. Furthermore, inspiratory effort estimated by PMI at different levels of pressure support and expiratory cycling will be compared with another estimator of patient's effort, the Pocc. Pocc is the pressure under assisted ventilation when the airway is briefly occluded during an expiratory manoeuvre. As last, during the steps at an early expiratory cycling (60%), the pressure-time waveform will be evaluated and airway resistance will be estimated by mimicking the interrupter technique. This will be compared to the estimation of the airway resistive component by using the esophageal catheter. Patients will be enrolled at least 6 hours after and within 72 hours since the switch to PSV from controlled mechanical ventilation modalities (CMV).
At this time, the following parameters will be recorded:
For each degree of expiratory cycling, the following parameters will be recorded:
In addition, the following parameters will be reported:
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria:
Exclusion Criteria
Primary purpose
Allocation
Interventional model
Masking
24 participants in 4 patient groups
Loading...
Central trial contact
Emanuele Rezoagli, MD, PHD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal