Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
The prevalence of obstructive sleep apnea (OSA) is high in the United States and is a major health concern. This disorder is linked to numerous heart, blood vessel and nervous system abnormalities, along with increased tiredness while performing exercise likely because of a reduced blood supply to skeletal muscles. The gold standard treatment of OSA with continuous positive airway pressure (CPAP) in many cases does not lead to significant improvements in health outcomes because the recommended number of hours of treatment per night is often not achieved. Thus, development of novel treatments to eliminate apnea and lessen the occurrence of associated health conditions is important. The investigators will address this mandate by determining if repeated exposure to mild intermittent hypoxia (MIH) reduces heart and blood vessel dysfunction and tiredness/ fatigue experienced while exercise performance. The investigators propose that exposure to MIH has a multipart effect. MIH directly targets heart and blood vessel associated conditions, while simultaneously increasing upper airway stability and improving sleep quality. These modifications may serve to directly decrease breathing episodes and may also serve to improve usage of CPAP. Independent of its effect, MIH may serve as an adjunctive therapy which provides another path to reducing heart and blood vessel abnormalities that might ultimately result in improvements in exercise capacity and reverse performance fatigue in individuals with OSA.
Full description
The prevalence of obstructive sleep apnea (OSA) is high in the Veteran population and this disorder is linked to numerous cardiovascular, neurocognitive and metabolic abnormalities. Thus, OSA is a major health concern in the Veteran population. Treatment of OSA in many cases does not lead to significant improvements in outcome measures. This inadequacy may be a consequence of reduced treatment adherence with continuous positive airway pressure (CPAP) or because the effect of CPAP on outcome measures is small or absent in some patients despite adequate adherence. Consequently, innovative therapies that directly impact co-morbidities linked to OSA or that increase CPAP adherence could lead to improved outcome measures. In the recent funding cycle, the investigators established that repeated daily exposure to mild intermittent hypoxia (MIH) coupled with CPAP modifies autonomic nervous system activity and dramatically decreases blood pressure compared to CPAP treatment alone. Because MIH was coupled with CPAP, the independent effect of MIH on blood pressure was not established. Moreover, it was not established if these outcomes were sustained for a prolonged time period (i.e. weeks to months).
Although the investigators obtained some indirect evidence that modifications in autonomic nervous system activity were coupled to the reduction in blood pressure, the investigators did not establish if modifications in microvascular function were evident. Microvascular dysfunction together with sympatho-vagal imbalance may have consequences not only for peripheral vascular resistance and blood pressure but also for muscle perfusion and metabolism, thereby limiting exercise performance and increasing fatigability in patients with OSA. Thus, reductions in blood pressure and improvement in microvascular function following treatment with MIH might serve to improve exercise capacity and reverse performance fatigue in individuals with OSA.
Besides its potential effect on autonomic and cardiovascular function, the investigators and others previously established that acute exposure to MIH initiates sustained increases in upper airway muscle activity in humans. This sustained increase is a form of respiratory plasticity known as long-term facilitation. However, in the absence of CPAP the investigators have shown that acute MIH immediately prior to or during sleep leads to increases in apnea severity. This might occur because the manifestation of long-term facilitation is absent in the presence of hypocapnia. Hypocapnia can be induced during sleep by the initiation of another form of plasticity known as progressive augmentation. However, it is possible that the combination of daily exposure to MIH administered many hours before the sleep period may mitigate the effects of progressive augmentation leading to increased upper airway stability.
Independent of this possibility, the investigators showed in the previous funding cycle that increased upper airway stability following treatment with MIH was coupled to a reduction in therapeutic CPAP and improved adherence. However, improved adherence to CPAP might also be linked to an increase in the arousal threshold to both respiratory and non-respiratory stimuli. All the uncertainties outlined above will be addressed in the present proposal.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
60 participants in 2 patient groups
Loading...
Central trial contact
Jason H Mateika, PhD MS BS; Shipra Puri
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal