Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
Muscle insulin resistance is a hallmark of upper body obesity (UBO) and Type 2 diabetes (T2DM). It is unknown whether muscle free fatty acid (FFA) availability or intramyocellular fatty acid trafficking is responsible for muscle insulin resistance, although it has been shown that raising FFA with Intralipid can cause muscle insulin resistance within 4 hours. The investigators do not understand to what extent the incorporation of FFA into ceramides or diacylglycerols (DG) affect insulin signaling and muscle glucose uptake. The investigators propose to alter the profile and concentrations of FFA of healthy, non-obese adults using an overnight, intra-duodenal palm oil infusion vs. an overnight intra-duodenal Intralipid infusion (both compared to saline control). The investigators will compare the muscle FFA storage into intramyocellular triglyceride, intramyocellular fatty acid trafficking, activation of the insulin signaling pathway and glucose disposal rates, providing the first measure of how different FFA profiles alter muscle FFA trafficking and insulin action at the whole body and cellular/molecular levels. By identifying which steps in the insulin signaling pathway are most affected, the investigators will determine the site-specific effect of ceramides and/or DG on different degrees of insulin resistance.
Hypothesis 1: Palm oil infusion will result in abnormal FFA trafficking into intra-myocellular ceramides and abnormal insulin signaling.
Hypothesis 2: Intralipid infusion will result in abnormal FFA trafficking into intra-myocellular saturated DG and abnormal insulin signaling.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
60 participants in 3 patient groups, including a placebo group
Loading...
Central trial contact
Pamela Reich
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal