Status and phase
Conditions
Treatments
About
The mechanisms and effectiveness of a technique to boost the brain's recovery mechanisms will be studied. Brain-Computer Interface (BCI),based on applying magnetic pulses (Transcranial Magnetic Stimulation, TMS) to the stroke damaged area in the brain, causing twitches in the paralysed muscles will be used. The size of these twitches are then displayed to the patient as neurofeedback (NF) on a computer screen in the form of a game. In the game, the aim for the patient is to learn how to make the twitches bigger by engaging appropriate mental imagery to re-activate the damaged brain region.
Full description
Participants will undergo transcranial magnetic stimulation (TMS) neurofeedback (NF) incorporated into a computer game that is tailored to train the individuals to produce larger than baseline motor evoked potentials (MEPs) in the stroke affected limb, by practising different mental imagery strategies. Pulses of TMS will be applied over the motor cortex of the stroke affected hemisphere, resulting in MEPs that will be recorded from the target muscles of the stroke affected limb. The brain computer interface (BCI) will process the amplitude of these MEPs in real-time, and will display this information on screen to the patient in the form of a game, where their goal is to push a rectangular bar (MEP amplitude) over the line (baseline amplitude when resting). If the trial is successful, the bar turns green and a positive sound-bite is heard. If unsuccessful, the bar turns red and a negative sound-bite is heard. This procedure is repeated for a total of 60 trials per session, spread over three distinct blocks with rest breaks in between. Changes in MEP amplitude will be monitored as training progresses. Half of the participants will be randomly allocated to a control condition, whereby they will experience identical TMS procedures as the experimental group apart from that the feedback bar height on screen will not display MEP amplitude, but will be fixed in the middle of the screen. Positive and negative feedback will be delivered, but in a fixed pattern, not related to changes in MEP.
Functional upper limb tests and qualitative tests will be conducted before TMS NF training starts and at the end of the training. Tools: Fugl-Myer (FM), Action Research Arm Test (ARAT), Oxford Cognitive Screen (OCS), National Institutes of Health Stroke Severity Scale (NIHSS), Muscle circumference (Bicep and forearm), Sleep Questionnaire, Hospital Anxiety and Depression Scale (HADS), Mental imagery questionnaire (MIQ). Brain MRI datasets from patients collected before and after TMS NF training. There will be 2 distinct data types produced: 1. High resolution T1 anatomical scans (grey matter) 2. Diffusion weighted imaging (DWI) scans (white matter).
Objectives are:
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria:
The exclusion criteria include:
Primary purpose
Allocation
Interventional model
Masking
20 participants in 2 patient groups, including a placebo group
Loading...
Central trial contact
Lamia Tadjine, MSc; Kathy Ruddy, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal