Status
Conditions
Treatments
About
This current proposal evaluates the Longitudinal Energy Expenditure and Metabolic Effects in Patients with COVID-19 (LEEP-COVID) to understand, guide and optimize our metabolic and nutritional care of these high risk patients. As no data exist for the metabolic effects of COVID-19 patients, this data is urgently needed and essential to assist in the care of COVID-19 patients worldwide. We are uniquely positioned at Duke to perform this research, as we are the only US center with 2 of the FDA-approved devices in existence currently capable of collecting this vital data to guide the care of COVID-19 patients worldwide.
Full description
Currently, no longitudinal data exist describing the metabolic and cardiac effects of SARS-CoV-2 (COVID-19) infection. This data is urgently needed to assist in care and promote recovery of COVID-19 patients worldwide, and elderly patients who are at higher risk due to increased age, pre-existing risk factors (frailty, sarcopenia, malnutrition), and co-morbid conditions. Further, new pathologies such as COVID-19-related cardiac dysfunction must be described and rapidly identified. Our innovative measurements will provide direct non-invasive assessments of the effect of COVID-19 infection on key measures including energy expenditure, substrate utilization, muscle mass, cardiac function, mitochondrial function, and body composition. In addition, we will be able to provide objective data on key recovery intervention requirements including energy/nutritional requirements, effects of nutrition and rehabilitation efforts on muscle mass and energy state, and recovery of cardiac, muscle function.
Study Questions: We propose to evaluate longitudinal metabolic and cardiac pathophysiology in patients with COVID-19 to understand, guide and optimize our metabolic clinical care during acute hospitalization. Further, this data will be essential in providing objective data to guide physical recovery interventions including nutrition delivery and physical therapy to ensure functional recovery of COVID-19 patients.
We hypothesize: 1) COVID-19 will lead to significant, EE/metabolic changes, systemic mitochondrial dysfunction, significant muscle wasting and loss of function throughout the course of illness and during recovery. We hypothesize metabolic needs will initially decrease in acute illness and subsequently increase as patients transition from the acute phase of COVID illness to recovery phases. This data will guide nutrition and metabolic/clinical care in all phases of COVID-19 care where, for example, over-and under-feeding may pose risk to patient outcome. We hypothesize loss of muscle mass and physical function occurring in COVID-19 will significantly affect nutritional/rehabilitative/recovery of function/QoL needs and requires addressing to personalize care to optimize clinical and functional recovery efforts in older COVID-19 patients.
We believe longitudinal detailed indirect calorimetry with the innovative new Q-NRG device, cardiac assessment, body composition, and muscle and ultrasound measures in COVID-19 patients will play a key role in understanding and treating COVID-19 infection by providing objective data on the metabolic, cardiac, volume/fluid status, and nutrition needs of COVID-19 patients to the bedside clinician. This will increase our understanding of the pathophysiology of COVID-19 and the ability of clinical teams to optimize care and patient outcomes. These urgently needed data will lead to key advances in the clinical care of COVID-19 patients worldwide.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
65 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal