ClinicalTrials.Veeva

Menu

Metabolic Cost Savings for Transtibial Amputees Wearing the Controlled Energy Storage and Return (CESR) Foot

US Department of Veterans Affairs (VA) logo

US Department of Veterans Affairs (VA)

Status and phase

Completed
Phase 3

Conditions

Transtibial Amputation

Treatments

Device: CESR Prosthetic Foot
Device: typical prosthetic foot
Device: standardized prosthetic foot

Study type

Interventional

Funder types

Other
Other U.S. Federal agency

Identifiers

NCT00494143
A4372-R

Details and patient eligibility

About

To determine if below-knee amputees will walk with better efficiency wearing a CESR foot which stores energy at heel strike and releases energy releases energy during push-off.

Full description

Amputees work harder and have greater oxygen cost during ambulation compared to those without limb loss. Therefore, amputees generally walk slower and tire more easily than intact individuals. The loss of the ankle as a propulsive and supportive joint requires the amputee to perform extra muscular work with the hip, trunk and contralateral limb during ambulation. This increased muscular activity consumes additional metabolic energy and means that amputees have to work harder to walk at the same speed as intact individuals. For some amputees, this extra effort is simply not possible, and their loss of functional ambulation leads to a progressive spiral of disuse, reduced capacity and more disuse. Conversely, greater mobility can lead to greater activity and even more successful return to the workplace. The health consequences for amputees who do not maintain functional ambulation is multifactorial and costly, not only in terms of dollars for the institutions committed to their care, but also for the individuals themselves in terms of decreased quality of life, increased disability and pain. Recent developments have resulted in the design of a novel prosthetic foot that uses the energy from compressive forces during heel contact, stores it throughout midstance and releases it at an optimal instant during push-off in late stance. This unique design, with Controlled Energy Storage and Release (CESR) developed by a team at the University of Michigan, Ann Arbor has been shown to reduce the metabolic cost penalty of prosthetic ambulation (i.e. the increased cost over normal walking) by 50% compared to a standard SACH foot, but as yet only intact individuals wearing an aircast boot equipped with the prosthetic feet have been studied. It is likely that the increased energy savings will also be observed in transtibial amputees. Young, active amputees will soon be entering the VA system following operations in Iraq and Afghanistan, and the energy improvements may benefit this new VA patient population. The CESR foot may also provide substantial metabolic cost savings to older less active amputees currently in the VA system. By improving gait efficiency amputees will be better able to keep up with the demands of functional ambulation, remain more active and postpone many of the debilitating consequences of limited mobility. Therefore we propose to first refine the design of the CESR foot focusing on the energy storage and energy release mechanisms of the CESR foot. Several spring characteristics may prove optimal for certain subjects depending upon weight and walking characteristics. This will be an iterative optimization process with power generation and absorption characteristics of the CESR foot evaluated using computerized gait analysis and the lessons used for further refinement. The second phase will involve a three week wear-testing trial to determine if any improvement in gait economy, reduction in fatigue, improvement in comfort, or increase in the amount of daily walking can be achieved. A validated questionnaire will be utilized to determine each amputee's comfort and fatigue during a three week trial in their conventional foot and with the CESR foot. Step counts will be performed on each individual over the entire 3 week period with both the conventional foot and with the CESR foot. We will collect full body gait kinematics (motion) and kinetics (forces) using our Vicon 612 system, and metabolic measurements using our VmaxST to calculate oxygen cost for 24 transtibial amputees while walking with the CESR foot and their conventional foot. This will permit the calculation of the energy storage and release of the foot by inverse dynamics and calculate the net effect upon metabolic energy cost savings during ambulation at several speeds. If the CESR foot is successful in amputee gait these domains, our next step will be to perform a multi-center study with other VA motion laboratories, and eventually collaborate with Ohio Willow Wood, a prominent prosthetic manufacturer who has expressed an interest in bringing the CESR foot to market.

Enrollment

7 patients

Sex

All

Ages

18 to 75 years old

Volunteers

Accepts Healthy Volunteers

Inclusion criteria

  • Transtibial Amputees > 1 year walking with prosthesis
  • Non-amputee control subjects

Exclusion criteria

  • Additional musculoskeletal pathology
  • Cognitive limitation

Trial design

Primary purpose

Treatment

Allocation

Randomized

Interventional model

Crossover Assignment

Masking

None (Open label)

7 participants in 3 patient groups

Conventional Prosthetic foot
Active Comparator group
Description:
A conventional prosthetic foot that has limited energy storage and return capabilities. It is standardized and used by all subjects in the study.
Treatment:
Device: typical prosthetic foot
Prescribed Prosthetic foot
Active Comparator group
Description:
the Prosthetic foot that the subject had prescribed for them by their clinical providers and was worn prior to study initiation
Treatment:
Device: standardized prosthetic foot
CESR foot
Experimental group
Description:
the experimental CESR, controlled energy storage prosthetic foot
Treatment:
Device: CESR Prosthetic Foot

Trial contacts and locations

1

Loading...

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems