Status and phase
Conditions
Treatments
About
This study is being done to understand metformin's mechanisms of action regarding glucose production, protein metabolism, and mitochondrial function.
Full description
It is believed that Metformin antagonizes the action of glucagon through different pathways. In mice, Metformin leads to inhibition of adenylate cyclase, reduction of levels of cyclic AMP and protein kinase A (PKA) activity, therefore blocking glucagon-dependent glucose output form hepatocytes. Glucagon plays an important role in the increased catabolic state seen in insulin deficiency. Hyperglucagonaemia states have been shown to accelerate proteolysis and leucine oxidation in insulin-deficient humans. Patients with insulin resistance and increased levels of glucagon have an increased in energy expenditure which may contribute to the catabolic state associated with this condition. We hypothesized that treatment with Metformin for 2 weeks will significantly inhibit glucagon-induced endogenous glucose production in insulin resistant individuals. We also hypothesized that glucagon-induced alterations in whole body protein metabolism and the increases in O2 consumption associated with hyperglucagonaemia states will be significantly inhibited by Metformin in these individuals. This would open the door for the development of other antidiabetic drugs with antagonism of glucagon as their principal mechanism of action.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
12 participants in 2 patient groups, including a placebo group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal