Status
Conditions
Treatments
About
Accumulating evidence suggests that early-life nutrition can affect metabolism and thus increase the risk of disease in adulthood (e.g. type II diabetes and obesity). One possible mechanism to explain these effects is epigenetic variation at critical periods of development. Epigenetic variation describes non-inherited permanent alterations to an individuals DNA.
Recent work in mouse models has demonstrated that maternal nutritional status can affect such epigenetic processes such as DNA methylation and gene expression during embryonic development, with profound effects on outcomes. The investigators aim to study these processes in humans for the first time. The investigators will exploit the "experiment of nature" setting in The Gambia, i.e. fluctuation in diet according to season. During the 'hungry' season diets are known to be depleted in nutrients required for epigenetic gene regulation. Nutritional biomarkers in blood as well as the dietary intake will be measured in pregnant women according to season. A blood sample will also be taken from babies born to these women to determine whether there is a direct effect of diet on mothers' nutritional status and hence variation in DNA methylation patterns in their babies by season.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion criteria women:
Exclusion criteria women:
Inclusion criteria infants:
Exclusion criteria infants:
166 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal