Status
Conditions
Treatments
About
Microcirculatory flow is subject to cyclic changes under the influence of heart rate, respiration, myogenic activity, neurogenic factors and endothelial factors. Microcirculatory oscillations (vasomotion) contribute significantly to tissue perfusion. Vasomotion analysis allowed to discriminate normoglycemic subjects, prediabetic subjects and diabetic subjects. Furthermore, changes in vasomotion can precede the emergence of global signs of microangiopathy complications in type 2 diabetes. In fact, few studies reported impaired vasomotion in type 2 diabetes with peripheral neuropathy. Vasomotion analysis after vasodilator (6-min walking test and hyperthermia) and after vasoconstrictor (foot lowering) stimulus could be an effective diagnostic tool to sharpen the diagnostic.
Objectives and Methodology: to study vasomotion at baseline and after exercise, hyperthermia and foot lowering within 3 groups of patients: diabetic without peripheral neuropathy, diabetic with subclinical peripheral neuropathy and diabetic with peripheral neuropathy and one group of sex- age- and body mass index-matched healthy control subjects.
All the subjects will benefit from a clinical, anthropometric, level of physical activity and biological evaluations. Type 2 diabetes participants will benefit from neuropathy evaluation. In addition, cutaneous microcirculation (perfusion and vasomotion) by means of Laser Doppler Flowmetry and Laser Speckle Imaging will be recorded at rest and after different stimuli (exercise, hyperthermia and foot lowering).
Full description
All the subjects will benefit from a:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
108 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal