Status
Conditions
Treatments
About
This study describes the development and validation of a deep learning prediction model, which extracts deep learning features from preoperative enhanced CT scans and analyzes postoperative pathological specimens of pancreatic cancer patients. The aim is to predict patient prognosis and response to chemotherapy treatment.
Full description
This study retrospectively collected enhanced CT scan data, pathological paraffin blocks, and clinical data from pancreatic cancer patients who underwent surgery at multiple centers between March 2013 and May 2024. The pathological paraffin blocks were stained using immunohistochemistry for prognostic immune microenvironment markers, and patients were classified based on these results. Subsequently, deep learning features were extracted from enhanced CT scans, and a multimodal prediction model was constructed using imaging features and clinical information. The model's performance was evaluated using metrics including area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
247 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal