Status
Conditions
About
Respiratory infections have a high associated morbidity and mortality, especially in immunocompromised patients. To initiate effective treatment of respiratory infections, it is essential that a rapid and thorough laboratory analysis of respiratory specimens be performed, given the wide range of pulmonary pathogens that can be detected in this population. Conventional microbiology is time-consuming and cumbersome, and the capability of local laboratories to assess specimens for rare or unusual pathogens is often limited. This study will evaluate if a newer technology can be effectively utilized in the identification of a broader range of infectious agents relative to conventional procedures.
Resequencing Pathogen Microarray (RPM) technology developed by TessArae , LLC which ceased operations in July 2014) uses a microarray chip to identify multiple pathogens in a clinical specimen. The technology has had limited clinical application, but early studies have shown its effectiveness in accurately identifying a large number of viral and bacterial organisms. In contrast to conventional microbiological procedures based on phenotypic traits (growth characteristic and enzymatic activity), this is microarray utilizes DNA sequence analysis to detect and identify the species, serotype/subtype, or strain of the infectious agent.
Aliquots of respiratory specimens (initially, specimens collected by bronchoalveolar lavage, BAL) from 200 patients at the NIH Clinical Center and the Washington Hospital Center will be analyzed using the customized microarray chip. The specimens will be collected as part of the patients routine clinical care. The results of the TessArray microarray analysis will not be available to the clinician and therefore will not have any effect on the clinical care of the patients.
The results of the microarray analysis from each site will be compared to that site s clinical laboratory results, and the data will be analyzed by site.
Full description
Respiratory infections have a high associated morbidity and mortality, especially in immunocompromised patients. To initiate effective treatment of respiratory infections, it is essential that a rapid and thorough laboratory analysis of respiratory specimens be performed, given the wide range of pulmonary pathogens that can be detected in this population. Conventional microbiology is time-consuming and cumbersome, and the capability of local laboratories to assess specimens for rare or unusual pathogens is often limited. This study will evaluate if a newer technology can be effectively utilized in the identification of a broader range of infectious agents relative to conventional procedures.
Resequencing Pathogen Microarray (RPM) technology developed by TessArae , LLC which ceased operations in July 2014) uses a microarray chip to identify multiple pathogens in a clinical specimen. The technology has had limited clinical application, but early studies have shown its effectiveness in accurately identifying a large number of viral and bacterial organisms. In contrast to conventional microbiological procedures based on phenotypic traits (growth characteristic and enzymatic activity), this is microarray utilizes DNA sequence analysis to detect and identify the species, serotype/subtype, or strain of the infectious agent.
Aliquots of respiratory specimens (initially, specimens collected by bronchoalveolar lavage, BAL) from 200 patients at the NIH Clinical Center and the Washington Hospital Center will be analyzed using the customized microarray chip. The specimens will be collected as part of the patients routine clinical care. The results of the TessArray microarray analysis will not be available to the clinician and therefore will not have any effect on the clinical care of the patients.
The results of the microarray analysis from each site will be compared to that site s clinical laboratory results, and the data will be analyzed by site.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Subjects may be included in this study if they:
EXCLUSION CRITERIA:
Patients unable or unwilling to give informed consent will be excluded from the study.
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal