Status
Conditions
Treatments
About
NeuroSuitUp is a multidisciplinary neurophysiological & neural rehabilitation engineering project, developed by the Lab of Medical Physics & Digital Innovation, School of Medicine, Faculty of Health Science Aristotle University of Thessaloniki and supported by a Neurosurgical Department. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme "Human Resources Development, Education and Lifelong Learning 2014- 2020" in the context of the project ""NeuroSuitUp"" (MIS 5047840). The website for the project can be accessed at https://imedphys.med.auth.gr/project/neurosuitup .
The investigation's primary objectives include the development, testing and optimization of an intervention based on multiple immersive man-machine interfaces offering rich feedback, that include a) mountable robotic arm controlled with wireless Brain-Computer Interface and b) wearable robotics jacket & gloves in combination with a serious game application and c) augmented reality module for the presentation of the previous two, as well as the development and validation of a self-paced neuro-rehabilitation protocol for patients with Cervical Spinal Cord Injury and the study of cortical activity in chronic spinal cord injury.
Full description
NeuroSuitUp project's full title is <Neurorehabilitation through synergistic man-machine intrefaces promoting dormant neuroplasticity in spinal cord injury> . It is a multidisciplinary neurophysiological & neural rehabilitation engineering project project, developed by the Lab of Medical Physics & Digital Innovation, School of Medicine, Faculty of Health Science Aristotle University of Thessaloniki and supported by a Neurosurgical Department. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme "Human Resources Development, Education and Lifelong Learning 2014- 2020" in the context of the project ""NeuroSuitUp"" (MIS 5047840). The website for the project can be accessed at https://imedphys.med.auth.gr/project/neurosuitup .
The NeuroSuitUp project involves:
Milestones of the study:
The sensorimotor networks of Spinal Cord Injury (SCI) patients and healthy individuals share similar connectivity patterns of but new functional interactions have been identified as unique to SCI patient networks and can be attributed to both adaptive and maladaptive organization effects after the injury . The importance of such phenomena both as possible prognostic factors and as contributors to patient rehabilitation remains unspecified as of yet. The exact underlying neurophysiological process and the extent that this is modulated by higher-order interactions is also not fully understood. Far more importantly, it has recently demonstrated for the first time partial neurological recovery in complete SCI patients after 5-10 years from the injury through ground-breaking neuro-rehabilitation protocols, integrated into traditional medical and physiotherapy practice. The investigators used rich visual and tactile feedback, virtual reality environments (VRE), BCI controlled exoskeleton and robotic actuators and furthermore documented plasticity effects at the cortical level.
Residual communication between brain and spinal cord plays an important role in possible neurorehabilitation, as even in complete injuries one fourth of nerve fibers crossing the injury level are functionally intact. As such, retraining CNS circuits and promoting plasticity to restore body functions have been recognized among key principles of spinal cord repair by the US National Institute of Neurological Disorders and Stroke (US NIH/NINDS). Nonetheless, existing literature does not yet portray with precision the pathophysiological process and effect of SCI on CNS and the sensorimotor networks. Studies needed to address this issue (such as our study) should be considered, identifing specific questions to be answered through further investigation: a) how and why reorganization of CNS networks is established, b) how this reorganization evolves in time with respect to the severity and chronicity of the injury, c) when can it be considered an adaptive or maladaptive evolution, and d) how can it be promoted or prevented respectively. The gained insight is expected to hold clinical relevance in preventing maladaptive plasticity after SCI through individualized neuro-rehabilitation, as well as in the design of assistive technologies for SCI patients.
This NeuroSuitUp study is a both a pre-clinical neurophysiological investigation on human SCI patients that aims to advance basic knowledge on SCI sequelae to CNS and also a translational implementation in clinical (rehabilitation) practice.. Our analysis aims to eventually help produce a model of CNS function along different stages of SCI (Acute, Sub-acute, Chronic), during different activity (resting state, simple motor tasks, complex sensorimotor activity), differentiate between Complete and Incomplete Injury and ideally being able to predict Negative outcome versus possible Recovery. The NeuroSuitUp project aims to investigate and promote dormant neuroplasticity after chronic SCI at the cervical spine, a type of injury that causes tetraparesis and tetraplegia. Our protocol will deploy training in brain computer interfaces and robotic arms, virtual environments (brain-controlled virtual arms, avatars and augmented reality wearable robotics with sensors and actuators (gloves & jacket) and rich audio/visual/tactile stimuli along with serious gaming applications to enhance motivation. Visual and kinesthetic sensorimotor brain networks will be also studied using high density electroencephalography in order to demonstrate and monitor CNS plasticity.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
20 participants in 3 patient groups
Loading...
Central trial contact
Panos Bamidis, PhD; Alkinoos Athanasiou, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal