Status
Conditions
Treatments
About
The objective of this study is to develop and evaluate novel robotic training strategies that modulate errors based on the subjects' individual motor and cognitive needs. For this purpose, healthy adults and neurologic patients will participate in robotic motor learning experiments. Patients have a diagnosis of a neurological disease (i.e., stroke, spinal cord injury, multiple sclerosis, Guillain-Barré syndrome) limiting arm motor function.
Full description
Neurological patients (e.g., after stroke) engage in intensive and expensive neurorehabilitation therapy to regain part of their former motor functional ability to perform everyday activities with often limited and unsatisfactory outcome. Robots became a promising supplement or even alternative for neurorehabilitation therapy, providing cost-effective, high repetition and task-oriented training. However, results of an initial body of work comparing the effectiveness of robotic training strategies are highly inconclusive. A possible explanation is that most current robotic systems cover only one neurorehabilitation strategy (e.g. reducing or augmenting movement errors) and may thus insufficiently address the subjects' individual needs and the characteristics of the task to be learned. In this study, Investigators will perform several motor learning experiments with healthy adult and neurological patients in order to evaluate the relative motor and cognitive benefits of newly developed robotic training strategies that modulate errors based on the subject's age, skill level and tasks characteristics. The effects of the new strategies will be compared to classical robotic assistance, and to non-robotic feedback approaches, such as visual feedback. The culmination of this work may help to optimize training benefits of already existing rehabilitation robots.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
259 participants in 1 patient group
Loading...
Central trial contact
Karin Buetler, Dr.; Laura Marchal-Crespo, Prof. Dr.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal