Status
Conditions
Treatments
About
Obesity leads to physiological imbalance resulting in hyperglycemia, dyslipidaemia and inflammation and can generate systematic oxidative stress through multiple biochemical mechanisms. Oxidative stress (OS) can induce DNA damage and inhibit DNA repair mechanisms. Very low calorie diet (VLCD) have rapid positive effect on weight loss, glucose homeostasis, insulin resistance, inflammation and OS. The aim of this study is to determine the effect of a three-week VLCD on anthropometric, biochemical and genomic parameters in individuals with BMI ≥ 35kg/m2.
Full description
Obesity is a complex chronic multifactorial disease associated with concomitant or increased risk for chronic inflammation, insulin resistance, dyslipidemia, oxidative stress, type 2 diabetes, cardiovascular disease, stroke and multiple cancer types. Oxidative stress (OS) can cause permanent DNA damage which could be detected with lymphocytes cytokinesis-block micronucleus (L-CBMN) cytome assay. Weight loss and improvement of dietary habits in people with obesity can affect genome stability and have beneficial effects on insulin sensitivity, inflammation and OS. Effects of very low calorie diet (VLCD) on DNA damage are scarce. The aim of this study is to determine the effect of a three-week VLCD used in Special Hospital for extended treatment of Duga Resa in patients with BMI ≥ 35kg/m2 on permanent DNA damage, lipid profile, insulin resistance, inflammation and anthropometric parameters.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
26 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal