Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
Many different factors can degrade the performance of an upper limb prosthesis users control with electromyographic (EMG)-based pattern recognition control. Conventional control systems require frequent recalibration in order to achieve consistent performance which can lead to prosthetic users choosing to wear their device less. This study investigates a new adaptive pattern recognition control algorithm that retrains, rather than overwrite, the existing control system each instance users recalibrate. The study hypothesis is that such adaptive control system will lead to more satisfactory prosthesis control thus reducing the need for recalibration and increasing how often users wear their device. Participants will wear their prosthesis as they would normally at-home using each control system (adaptive and non-adaptive) for an 8-week period with an intermittent 1-week washout period (17 weeks total). Prosthetic usage will be monitored during each period in order to compare user wear time and recalibration frequency when using adaptive or non-adaptive control. Participants will also play a set of virtual games on a computer at the start (0-months), mid-point (1-months) and end (2-months) of each period that will test their ability to control prosthesis movement using each control system. Changes in user performance will be evaluated during each period and compared between the two control systems. This study will not only evaluate the effectiveness of adaptive pattern recognition control, but it will be done at-home under typical and realistic prosthetic use conditions.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
9 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal