Status
Conditions
Treatments
About
The study will investigate the effect of personalized diet on blood glucose control in individuals with diabetes as compared with ADA diet.
The primary objective is to test whether personalized diets based on DayTwo's algorithm can improve glycemic control and metabolic health compared to standard ADA acceptable dietary approach for diabetes at the end of a 3-month intervention period.
Full description
The prevalence of diabetes type 2 estimated to 628 Million people in the world by 2045 and was announced by the International Diabetes Federation (IDF) as one of the biggest epidemics in the history. Complications of diabetics Type 2 can range from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations. It is also linked to other manifestations, collectively termed the metabolic syndrome, including obesity, hypertension, non-alcoholic fatty liver disease, hypertriglyceridemia and cardiovascular disease .
As blood glucose levels are mainly affected by food consumption, the growing number of blood glucose abnormalities is likely attributable to nutrition. Indeed, dietary and lifestyle changes normalize blood glucose levels in 55% -80% of the cases. Therefore, maintaining normal blood glucose levels is critical for preventing diabetes and its metabolic complications.
Currently, there are no effective methods for predicting the postprandial glycemic response (PPGR) of people to food. The current practice of using the meal carbohydrate content is a poor predictor of the PPGR and has limited efficacy. The glycemic index (GI), which quantifies PPGR to consumption of a single tested food type, and the derived glycemic load have limited applicability in assessing the PPGR to real-life meals consisting of arbitrary food combinations and varying quantities, consumed at different times of the day, and at different proximity to physical activity and other meals. Indeed, studies examining the effect of diets with a low glycemic index on TIIDM risk, weight loss, and cardiovascular risk factors yielded mixed results . The limited success of GI measure is probably due to the fact that it is a general index, which does not take into consideration the large variation between individuals in their glycemic response to food. It can be concluded, therefore, that in order to control glycemic response of an individual, we should build a personally tailored diet which takes into account various factors.
Although genetic factors influence the levels of fasting blood glucose and glycemic response to food, these factors only explain approximately 10% of the variance in the population. Supporting this claim is the fact that the number of people with diabetes is increasing in recent years regardless of patients' genetic background. In contrast, environmental factors such as the composition of the intestinal bacteria and their metabolic activity may affect the glycemic response. The entire bacteria population in the digestive tract (microbiome) consist of ~1,000 species with a genetic repertoire of ~3 million different genes. The microbiome is directly affected by our diet and directly affect the body's response to food. This special relationship between the host and the intestinal flora is reflected by the composition of bacteria unique to type 2 diabetes and in the significant changes in the bacteria composition upon transition from a diet rich in fiber to a "Western" diet rich in simple sugars.
Recently, DayTwo developed a highly accurate algorithm for predicting the personalized glucose response to food for each person based on the PNP Study conducted by the Weizmann Institute. The algorithm's predictions are based on many personal measurements, including blood tests, personal lifestyle and gut bacteria. In a small-scale pilot study that was conducted by the Weizmann Institute using the algorithm, the researchers personally tailored dietary interventions to healthy and prediabetic people, which resulted in significantly improved PPGRs accompanied by consistent alterations to the gut microbiota. These findings led to hypothesize that tailoring personalized diets based on PPGRs predictions may achieve better outcomes in terms of controlling blood glucose levels and its metabolic consequences relative to the current standard nutritional therapy for diabetes.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Diabetes Type 2 for at least 1 year (diagnosed by ADA criteria) and up to 20 years
7.5 <= HbA1C <= 9.5
Stable dose of meds for 3 months
Stable diet and lifestyle for 3 months
Age -between 18 to 85
BMI - between 25 to 35
Capable of working with smartphone application
At least 5 days of the food logging in screening week:
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
200 participants in 2 patient groups
Loading...
Central trial contact
Tal Ofek, Ph.d; Rony Bikovsky
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal