Status
Conditions
Treatments
About
The Collar Therapy Indicator (CoTI) (A device that is placed in collar around the neck resembling a turtle neck sweater collar with a wire and recording box) has been shown in a single small previously published experience to provide data regarding radioiodine exposure that correlates with conventional methods of measuring I-123 and I-131 uptakes after diagnostic dose administration and/or therapy for thyroid disorders. We hypothesize that the device's continuous measurement capability will permit more accurate estimates of radiation exposure to thyroid tissue than conventionally employed methods assessing fractional uptake at one or a few time points. It may also provide information about the extent of variability in the absorbed radiation dose among patients with thyroid cancer and hyperthyroidism. By providing more complete information about individual patient's exposures, it will facilitate more accurate estimation of the administered I-131 dose requirements for control of hyperthyroidism and thyroid remnant ablation while reducing the need for repeated visits to the clinic for dosimetry measurements. The aims of our project include the following: (1)To compare quantitative imaging-derived thyroid time activity curve to that obtained using the CoTI and to determine the extent to which there is variability in radiation dose predicted using conventional methods to that predicted from measurement of the full Time-Activity Curve (TAC).(2) Evaluate the uptake and clearance kinetics across the 5 patients in each category as proof of principle for a potential larger trial to investigate use of this device in optimizing the administered doses of radioactive iodine to achieve therapeutic goals while minimizing risks of comorbidities, such a post-radioiodine hypothyroidism in patients with Graves' disease.(3)Evaluate patient experience, convenience, and discomfort in using the CoTI device with a survey instrument.
Full description
Radioiodine treatment for thyroid disorders represented an early example of individualized medicine. Since its introduction 80 years ago, the therapeutic I-131 dosage has usually been tailored to individual patient requirements based on the uptake of a tracer radioiodine dose. Various techniques have been employed to estimate the administered dose of I-131 for optimal therapeutic benefit. Estimated exposure has typically been extrapolated from the results of activity measurements at one or two time points, e.g., at 4 and 24 hours. We now know that treatment of hyperthyroid Graves' disease with these methods lead to a 13-25% rate of failure to cure hyperthyroidism and a 46-80% rate of long-term hypothyroidism in cured patients. Similarly, such relatively crude dosimetry doubtless result in significant overtreatment in the case of remnant ablation for differentiated thyroid cancer.
For patients with differentiated thyroid cancer requiring remnant ablation, the administered activity has, in most cases, been derived empirically, ranging between 30-100 mci. The high success rates in ablating remnant thyroid tissue implies that many patients are still treated with higher 131-I doses than required, with potential side effects, such as radiation sialadenitis.
Pilot Study Rationale; Our overall objective is to provide the optimal dose to each patient. This study will apply a novel "wearable" radiation detection technology to determine continuous cervical measurements over days following tracer radioiodine administration will provide information that permits the tailoring of subsequent therapeutic radioiodine doses more precisely to improve clinical outcomes, as described above.
The actual therapeutic dose decisions in this pilot trial, however, will not be based on the collar device measurements. Patients with Graves' disease will receive 180-200 µCi I-131 per gram of estimated gland mass based on the conventional method of dose calculation, based on a 24-hour % uptake and gland volume. Most patients with thyroid cancer would receive the 30 mCi dose for remnant ablation prior to the placement of the COTI device, as per the American Thyroid Association (ATA) guidelines.
STUDY DESIGN AND METHODS This will be an unmasked prospective pilot study involving patients with Graves' disease (Group I) and differentiated thyroid cancer (Group II). Five patients in each group will have radiation activity measurements using the COTI devise. All persons in the study will receive 131-I treatment based on the current standards of care for dose estimation.
Study Device; The CoTI has 3 components;
Two types of collar devices will be used: the lower activity and the medium activity
Study Population;
IRB approval and HIPPA regulations; Since it is a project involving a medical device which will be applied to the patients' neck, it will require the following;
Institutional Review Board (IRB) regular approval.
Registry into ClinicalTrials.gov.
Appropriate forms and consent process for the patients. The recruitment of subjects for the study;
Preparation the patient;
After obtaining written consent, venous blood sample will be obtained for work for requisite laboratory evaluation for baseline labs as outlined below, including in women, a pregnancy test prior to the I-131 remnant ablation dose. The (medium activity) CoTI device will be placed under supervision and then adjusted for convenience as outlined above. Background activity of the patient, a phantom, and the device itself will be measured. After administration of I-131, an initial uptake at time 0 will be obtained. The CoTI device will then be placed and the patient will be asked to come back at scheduled imaging times for Group II. Anatomical localization for the CoTI for all patients will be standardized by markings.
Scheduled Imaging times; Group I - Persons with Graves' Disease
After I-123 diagnostic dose - A planar image with a pinhole collimator at time 06.00 hours.
After administration of 200 µCi of I-131 dose
Group II - Persons with Thyroid Cancer
-A SPECT image would be performed at 24 hours (with low dose CT for quantification and attenuation correction) after I-131 therapy.
-A second SPECT image at 48 hours.
-A third SPECT image at 72 hours (with low dose CT for quantification and attenuation correction).
A final SPECT CT image (with low dose CT for quantification and attenuation correction) at day 7 post therapy.
Data collection, periodic follow up; • Baseline data will include age, gender, BMI; duration of autoimmune thyroid disease and/or differentiated thyroid cancer, History/details of thyroid cancer (stage, Fine Needle Aspiration (FNA) findings, final tumor histopathology, presence of lymph node metastasis thyroglobulin levels- baseline and stimulated, preoperative ultrasound findings, extent of surgery); presence of co-morbidities, details of autoimmune thyroid disease (prior anti-thyroid regimen including duration of discontinuation, thyroid function tests (free thyroxine, free triiodothyronine, TSH), thyroid antibodies, and thyroid stimulating immunoglobulins ), duration and history of levothyroxine therapy (in cases with thyroid cancer), results of neck and thyroid ultrasound, measured neck circumference prior to application of device, quality of life scores as measured by a questionnaire. Imaging data would be acquired as outlined above Statistical Analysis; Descriptive data will be outlined for all the participants tabulating the variables as determined. The intrapatient variability as well as accuracy and precision of the device will be obtained individually for Group I and Group II patients. The correlation (non-parametric) Spearman correlation coefficient will be obtained to assess the relationship between the uptake and findings as obtained by the collar device and conventional methods of uptake measurement.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Group I
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
10 participants in 1 patient group
Loading...
Central trial contact
Prasanna Santhanam, MBBS, MD; Paul Ladenson, MD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal