Status
Conditions
About
This study will test the use of a radioactive substance called [11C]dLop for measuring P-glycoprotein (P-gp) using positron emission tomography (PET) imaging. The P-gp protein acts as a pump in cells, affecting a variety of functions, such as limiting drug absorption and elimination and decreasing drug penetration into certain tissues, such as the brain. It is a major obstacle to successful chemotherapy because it can pump cancer drugs out of the cells, interfering with treatment. Decreased P-gp function may contribute to disorders such as Parkinson s disease and Alzheimer s disease, whereas higher levels of the protein have been found in patients with epilepsy and in several forms of drug-resistant cancer tumors. This study will determine uptake and clearance of [11C]dLop and the radiation exposure to organs of the body to assess its possible use in further studies of P-gp function.
Healthy normal volunteers between 18 and 51 years of age may be eligible for this study. Candidates are screened with a medical history, physical examination and blood and urine tests.
Participants undergo the following procedures:
Full description
P-glycoprotein (P-gp) is an ATP-binding cassette (ABC) transporter and is the major efflux pump in the blood-brain barrier. P-gp has several physiological roles such as limiting drug absorption, active drug elimination, and limits drug penetration into sensitive tissues (e.g., brain and testis) (Fromm, 2004). Reduced activity or expression of P-gp may contribute to neurodegenerative disorders such as Parkinson s and Alzheimer s disease. The reduced activity of P-gp (i.e., decreased neuroprotection at the blood brain barrier) may allow harmful pesticides access to the brain which can damage the brain s dopaminergic cell groups possibly leading to Parkinson s disease (Betarbet et al., 2000; Kortekaas et al., 2005). The increased deposition of beta-amyloid in Alzheimer s disease, may be due in part, to the decreased elimination of cerebral beta-amyloid in brain (Vogelgesang et al., 2002). Conversely, an overexpression of P-gp has been found in epilepsy and in several forms of multi drug resistant cancer tumors (Brandt et al., 2006; Szakacs et al., 2006). In vivo evaluation of P-gp function in the brain and throughout the body is important in disease states, and in therapeutic and diagnostic drug evaluation.
P-gp function has been assessed in healthy volunteers with positron emission tomography (PET) using [11C]verapamil, nevertheless, accurate quantification of this PET radioligand is difficult due to the large contribution of radiometabolites and low signal (Ikoma et al., 2006; Lee et al., 2006; Lubberink et al., 2007). Therefore, we have recently developed [11C]dLop as an alternative radioligand for imaging P-gp function, which will allow a more accurate quantification of P-gp with a higher signal and less contribution of radiometabolites. In the current protocol, we wish to evaluate [11C]dLop in healthy volunteers to determine the kinetics of brain imaging of P-gp function. In order to simulate P-gp dysfunction in healthy volunteers we will administer the P-gp inhibitor tariquidar. We will perform brain PET scans using [11C]dLop before and after P-gp blockade in order to quantify P-gp function at the blood-brain barrier.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
For the dose escalation study using oral tariquidar, we will select healthy adult female and male volunteers (age 18-51 years old). These healthy volunteers will be medication free, excluding birth control pills. These subjects will be asked to abstain from any medications 16 days before and 1 week after participation in the study.
For the AD study, we will select male and female AD patients and age-matched volunteers who are at least 45 years of age.
INCLUSION CRITERIA:
EXCLUSION CRITERIA:
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal