Status
Conditions
Treatments
About
The purpose of this study is to examine gene expression profiles by DNA microarray in patients who are responders and non-responders to interferon and ribavirin treatment for hepatitis C virus (HCV). Genes involved in inflammation and fibrosis and mediators of the Th-1 lymphocyte response will be looked for. It is hoped that genetic targets for future more effective and less toxic treatments will be identified.
Full description
Background and Research Plan:
Chronic HCV infection often follows a progressive course over many years, and can ultimately result in cirrhosis and the need for liver transplantation or hepatocellular carcinoma. The decision to treat patients with chronic hepatitis C infection is based upon several factors including the natural history and stage of the disease and the efficacy and adverse effects related to therapy. As a general rule patients who are considered for treatment should have histologic and virologic evidence of chronic infection (i.e., HCV RNA detectable in serum) and an elevated serum ALT (1). Combination treatment with Interferon and Ribavirin is currently the best available treatment for chronic HCV infection. However, response to therapy is suboptimal and there are several side effects.
Side effects seen during therapy of patients with Interferon and Ribavirin include flu-like symptoms mostly due to interferon, cytopenias and haemolysis induced by Ribavirin. Psychiatric changes due to interferon, occur in up to 50% and thyroid abnormalities requiring therapy occur in about 1 to 5% treated with interferon. Autoimmune disease and retinal haemorrhages have also been reported. In addition, combination therapy is associated with significant risks in patients with renal dysfunction, cardiac disease and haemolytic anaemias as treatment may be associated with anaemia. Patients who are depressed or suicidal should also be excluded (2).
To this point little DNA microarray work done has been done with HCV. However, what work has been done is interesting and shows promise. In studies comparing Hepatitis B (HBV) with Hepatitis C, HBV infection was found to express genes predominantly involved in inflammation. In contrast, with HCV infection anti-inflammatory genes were found to be expressed (3). In another study HCV associated cirrhosis has been shown to be characterized by proinflammatory, pro-fibrotic and proapoptotic gene expression profiles (4).
The progression of HCV infection by gene expression analysis of liver biopsies in acutely infected chimpanzees that develop persistent infection, transient viral clearance, or sustained clearance has been examined. Transient and sustained viral clearance were uniquely associated with induction of IFN-gamma-induced genes and other genes involved in antigen processing and presentation and the adaptive immune response. The study revealed genome-wide transcriptional changes that reflect the establishment, spread, and control of infection, and they reveal potentially unique antiviral programs associated with clearance of HCV infection (5).
In-vitro studies in the human cell line Huh7 has shown that on exposure of the cells to Interferon 50 genes were up-regulated by at least twofold in control clones, whereas induction of 9 of the 50 genes was significantly reduced in those Huh7 clones expressing NS5A. Interferon-alpha activity has been found to be inhibited by the HCV protein NS5A. The strongest effect of NS5A on Interferon response was observed on the OAS-p69 gene with reduced expression. In addition, Huh7 cells expressing NS5A showed an up-regulation of interleukin-8 a proinflammatory cytokine. As a result this study postulated a mechanism for NS5A mediated interferon resistance (6).
In a recent study microarray gene profiling of peripheral blood mononuclear cells from hepatitis C patients treated with Interferon-alpha was performed. 88 genes directly relating to functions of immune cells were up-regulated, including genes involved in antigen processing and presentation, T-cell activation, lymphocyte trafficking, and effector functions, suggesting that Interferon-alpha up-regulates multiple genes involving different aspects of immune responses to enhance immunity against hepatitis C virus (7).
Currently, treatment for HCV still has a significant non-responder rate and is associated with side effects which limits many individuals from receiving treatment. Already molecular profiling by DNA microarrays has identified potential genetic targets which may have a role in the pathogenesis of HCV-associated hepatitis and more importantly possible targets which have a role in response to Interferon treatment. The work proposed here hopes to build on this body of knowledge and may lead to improved treatment modalities for HCV.
Methods/Experimental Design:
Approval from the Alfred Hospital Ethics Committee will be obtained and subjects will be recruited via the Alfred Hospital's Hepatitis Clinics. Informed consent for the study will be obtained after its purpose is explained verbally and via a plain English statement. Informed consent will also include consent for liver biopsies. Initially, a pilot study will be undertaken in which only one subject will be recruited to both the experimental and control arm of the study. Once the results from this pilot study have been analysed the study will be expanded to encompass a greater number of individuals.
Liver biopsies will be performed on the following groups.
Enough liver tissue (approximately 1-2 mg) will be obtained to isolate messenger RNA (mRNA) by oligo dT chromatography. Once isolated the mRNA will be reverse transcribed to complementary DNA (cDNA). This cDNA will then be labeled with a fluorescent reporter molecule. Hybridization of the labeled liver cDNA will then occur with the DNA microarray. It is envisaged that the microarray will be commercially obtained and consist of human cDNA. There is enough DNA on the microarray that two lots of labeled liver cDNA with different fluorescent markers (i.e. red and green) can be hybridized to the array at the same time without any interference. The following hybridizations would then be set up.
Reporter molecule 1: HCV +ve group. cDNA Reporter molecule 2: HCV -ve group. cDNA
Hybridization 1 Responder to Rx. Before Rx Control cDNA
Hybridization 2 Responder to Rx. After Rx Control cDNA
Hybridization 3 Non responder to Rx. Before Rx Control cDNA
Hybridization 4 Non responder to Rx. After Rx Control cDNA
Rx = treatment.
The hybridized array will then be scanned and commercially available software packages will be used to help in the interpretation of the results (8). Genes or groups of genes of particular interest include:
Pro-inflammatory response genes
Genes involved in a pro-fibrotic response.
In addition, novel genes previously unidentified, with differential expression will be looked for and will be characterized.
References relevant to this project (from literature search)
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Loading...
Central trial contact
Mark D Berzsenyi, MBBS
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal