Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
This application seeks renewed support for MH59803, "Dopaminergic substrates of startle gating across species," to extend a clear path of "bench-to-bedside" progress towards a critical paradigm shift in therapeutic models for schizophrenia (SZ) and schizoaffective disorder, depressed type (SZA): the use of Pharmacologic Augmentation of Cognitive Therapies (PACTs). This novel therapeutic strategy for SZ/SZA directly addresses the need for more effective treatments for this devastating disorder. MH59803 has investigated the neural regulation of laboratory-based measures of deficient information processing in SZ/SZA patients, using rodents and healthy human subjects (HS) to explicate the biology of these deficits, and to establish a rational basis for developing novel therapies for SZ/SZA. In its first 9 years, MH59803 studies of the neural regulation of prepulse inhibition (PPI) of startle in rats focused on basic neurobiological and molecular mechanisms. Over the past 2 years of support, MH59803 studies moved "from bench-to-bedside," focusing on dopamine (DA) agonist effects on PPI and neurocognition in HS, and their regulation by genes identified in cross-species studies. These studies detected biological markers that predict PPI-enhancing and pro-cognitive effects of the DA releaser, amphetamine (AMPH) in humans, leading to specific predictions of AMPH effects on PPI, neurocognition and Targeted Cognitive Training in SZ/SZA patients. If confirmed in the present application, these predictions could help transform therapeutic approaches to SZ/SZA. This renewal application of MH59803 thus reflects a logical progression of studies at systems and molecular levels, translated first to HS, and now to potentially transformative therapeutic models in SZ/SZA patients.
Full description
MH59803 demonstrated that AMPH (20 mg p.o.) significantly increased PPI and neurocognitive performance (MATRICS Consensus Cognitive Battery; MCCB) in HS characterized by specific performance-based or genetic biomarkers, including the val/val genotype for the rs4680 polymorphism of catechol-O-methyltransferase (COMT). Mechanistically-informative results were detected in studies of AMPH effects on PPI in rats with high vs. low brain regional Comt expression. Together with several reports of improved neurocognition and no adverse effects of acute or sustained AMPH administration to antipsychotic (AP)-medicated SZ/SZA patients, MH59803 findings provide a strong rationale for the next goal of this application: to test the potential utility of AMPH in a paradigm of biomarker-informed "PACTs". This "next step" is highly innovative - never previously reported, or perhaps even attempted - and consistent with National Institute of Mental Health (NIMH) objectives, directly challenges existing models for SZ/SZA therapeutics. Investigators will determine whether a test dose of 10 mg AMPH p.o. administered to biomarker-identified, AP-medicated SZ/SZA patients generates predicted increases in PPI, MCCB performance, and sensory discrimination learning in a Targeted Cognitive Training (TCT) module. In total, Investigators will leverage knowledge generated through converging cross-species studies in MH59803, to directly advance scientific and clinical domains, by testing the effects of a pro-cognitive drug on neurophysiological and neurocognitive performance, and Targeted Cognitive Training, in biomarker-stratified subgroups of SZ/SZA patients.
Aim: To assess acute effects of AMPH (0 vs 10 mg po) on PPI, neurocognition and computerized TCT in AP-medicated SZ/SZA patients. Hypothesis: PPI- and MCCB-enhancing effects of AMPH seen previously in HS will also be detected in SZ/SZA patients, as will TCT-enhancing effects of AMPH. Prediction: In a within-subject, placebo-controlled, randomized design, AMPH (10 mg po) will increase PPI and enhance MCCB and TCT performance in medicated SZ/SZA patients, particularly among those characterized by low basal performance levels and/or the val/val rs4680 COMT polymorphism. Concurrent HS testing will confirm and extend findings of AMPH effects on PPI and neurocognition, and help interpret findings in SZ/SZA patients.
In all participants, the aim to assess acute effects of 0 vs. 10 mg po dextroamphetamine (AMPH) on Prepulse Inhibition (PPI), neurocognition MATRICS: Consensus Cognitive Battery; MCCB, and computerized Targeted Cognitive Training (TCT).
Hypothesis: AMPH will enhance:
Prediction: In a within-subject, placebo-controlled, randomized design, AMPH (10 mg po) will increase PPI and enhance MCCB and TCT performance in medicated SZ/SZA patients, particularly among those characterized by low basal performance levels and/or the val/val rs4680 COMT polymorphism. Concurrent HS testing will confirm and extend findings of AMPH effects on PPI and neurocognition, and help interpret findings in SZ/SZA patients.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
82 participants in 2 patient groups, including a placebo group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal