Status
Conditions
Treatments
About
The purpose of this study is the development of a content-based image retrieval (CBIR) platform, where validation studies will be conducted for liver disease subtyping and hepatocellular carcinoma (HCC) phenotyping on images for use as diagnostic and prognostic markers of outcome in conjunction with large scale data registries and advanced predictive machine learning methodologies. The proposed objectives will deliver one or more fit-for-purpose non-invasive imaging-based methodologies to evaluate the presence, activity and type of HCC in clinical practice.
Full description
The study will advance through two distinct phases.
Traditional medical image retrieval systems such as Picture Archival Systems (PACS) use structured data (metadata) or unstructured text annotations (physician reports) to retrieve the images. However, the content of the images cannot be completely described by words, and the understanding of images is different from person to person, therefore text-based image retrieval system cannot meet the requirements for massive images retrieval. In response to these limitations, CBIR systems using visual features extracted from the images in lieu of keywords have been developed. An important and useful outcome of these CBIR is the possibility to bridge the semantic gap, allowing users to search an image repository for high-level image features allowing the matching of image-based phenotype signatures extracted directly from the query medical image with phenotype signatures indexed in a registry.
The Median Technologies CBIR system uses patented algorithms and processes to decode the images by automatically extracting hundreds of imaging features as well as highly compact signatures from tens of thousands of 3D image patches computed across the entire image without the need for any prior segmentation. In addition to detailed phenotypic profiles which can be correlated with histopathology and genomic and plasmatic profiles, the system generates a unique signature for each tile providing a fingerprint of the "image-based phenotype" of the corresponding tissue. Using massively parallel computing methods, imaging biomarkers and phenotype signatures are extracted from a target image are then organized into clusters of similar signatures and indexed for real-time search and retrieval into schema-less (NoSQL) databases.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Patients with visual liver disease who:
Exclusion criteria
2,429 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal