Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
The purpose of this pilot study is to conduct a 12-week pilot feasibility study testing usability of a reinforcement learning model (AdaptRL) in a weight loss intervention (ADAPT study). Building upon a previous just-in-time adaptive intervention (JITAI), a reinforcement learning model will generate decision rules unique to each individual that are intended to improve the tailoring of brief intervention messages (e.g., what behavior to message about, what behavior change techniques to include), improve achievement of daily behavioral goals, and improve weight loss in a sample of 20 adults.
Full description
Reinforcement Learning (RL), a type of machine learning, holds promise for addressing the limitations of previous approaches to implementing JITAIs. Adaptive RL applications work by updating information about expected "rewards" (i.e., proximal outcomes) based on the results of sequentially randomized trials. To realize the potential of adaptive interventions to reduce health disparities in cancer prevention and control, mHealth interventionists first need to identify methods of using digital health participant data to continually adapt decision rules guiding highly tailored intervention delivery. This research team has developed a reinforcement learning model (AdaptRL) that reads in and analyzes user data (e.g., calories, weight, and activity data from Fitbit) in real-time, uses RL to efficiently determine which message a participant should receive up to 3 times per day, and creates a JITAI tailored to optimize daily behavioral goal achievement and weight loss for each participant. The objective of this study is to test the feasibility of using this reinforcement learning model in a pilot weight loss study.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
19 participants in 1 patient group
Loading...
Central trial contact
Nisha O'Shea, PhD; Brooke Nezami, PhD, MA
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal