Status
Conditions
Treatments
About
Bone losses are well known to occur in response to unloading (in microgravity or during immobilisation) and in patients with chronic obstructive airway disease (COPD). However, it is unknown whether there is an interactive effect between hypoxia and musculoskeletal unloading upon bone and mineral metabolism. Fourteen non-obese men, who are otherwise healthy, will undergo 3x 21-day interventions; normobaric normoxic bed rest (NBR; FiO2=21%), normobaric hypoxic ambulatory confinement (HAMB; FiO2=14%; ~4000 m simulated altitude), and normobaric hypoxic bed rest (HBR; FiO2=14%). The effects of hypoxia and bedrest on bone metabolism and phosphor-calcic homeostasis will be assessed (before and during each intervention, and 14 days after each intervention period) using venous blood sampling, 24hr urine collections, and peripheral quantitative computerized tomography (pQCT).
Full description
The risk of bone loss in response to immobilization and space flight is widely recognized, with such bone losses occurring predominantly in the legs. Loading forces in the lower extremities are typically low in space and during bed rest, but musculoskeletal loading countermeasures can prevent or reduce bone losses induced in these conditions. Although the primary origin may be of a mechanical nature, bone losses in astronauts and immobilized patients are likely to be modulated by the endocrine and the internal environment.
Bone loss and osteoporosis is also prevalent in those with chronic obstructive pulmonary disease (COPD). The most discussed etiological factors for this condition include lack of physical activity, vitamin-D deficiency, hypogonadism, use of corticosteroids and smoking. However, COPD is associated with tissue hypoxemia and it is unclear whether hypoxia per se will affect bone turnover or metabolism.
The protocol of the current study standardises potential confounding factors, such as physical activity, ambient temperature, hypoxic stimulus and nutritional composition of the diet across all 3 interventions, and aims to extend our knowledge of the effects of hypoxia and bedrest on bone metabolism and phospho-calcic homeostasis.
Fourteen non-obese men, who are otherwise healthy, will be recruited following medical and psychological screening. They will be invited to attend the Olympic Sport Centre, Planica, Slovenia on 3 occasions, with each visit being 31 days in duration and separated by 5 months. Each 31-day visit ('campaign') includes a baseline recording period (5 days), 21 days of intervention, and a recovery period (5 days), with a follow-up visit being carried out 14 days after each intervention. The 3 interventions will be allocated in a randomized, cross over design: i) Normobaric normoxic bed rest (NBR; FiO2=21%), ii) Normobaric hypoxic ambulatory confinement (HAMB; FiO2=14%; ~4000 m simulated altitude), and iii) Normobaric hypoxic bed rest (HBR; FiO2=14%). A standardized, repeating, 14-day dietary menu, comprised of foods commonly consumed in the Slovenian diet, will be applied during all campaigns. Targeted energy intakes will be calculated individually using a modified Benedict-Harris formula, with physical activity factor multipliers of 1.2 for the HBR and NBR campaigns and 1.4 for the HAMB campaign, used to promote energy balance. Body mass will be monitored daily during the campaigns using a gurney incorporating load cells, and whole body composition will be determined before and immediately after each intervention using fan beam dual-emission X-ray absorptiometry. Macronutrient composition of the diet will be approximately 17% protein, 53% carbohydrate and 30% fat, with >1.1g of protein per kg body weight provided per day, and daily salt (sodium chloride) intake being <10g. Food will be provided in weighed portions and subjects will be encouraged to eat all food supplied. However, any food not eaten will be weighed and actual amount consumed recorded in a diet analysis programme.
Participants will have bone mineral content assessed at 5 time points (before, 3 during and one after each intervention) using pQCT scans of the calf and thigh. Horizontal scans will be taken at 4%, 14%, 38%, and 66% of the tibia (assessed from its distal end), and at 4% and 33% of the femur. Twenty-four hour urine collections will be obtained before (2 time points), during (11 time points) and after (3 time points) each intervention, and will be assessed for urinary calcium and phosphate content, and for a marker of bone reabsorption (N-terminal telopeptide). In addition, early morning, fasting venous blood samples will also be taken before (2 time points), and during (5 time points) each intervention. These will be analysed for calcium, phosphate, bone specific alkaline phosphatase, parathyroid hormone, 25-Hydroxyvitamin D, Procollagen-I-N-terminal propeptide and regulators of bone metabolism, (Dickkopf-related protein 1 and Sclerostin).
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
(Biochemical analysis of the following parameters: ATIII, High sensitive C-reactive protein, S-Akt., Factor V-Leiden, Prothrombin, Lupus-partial thromboplastin time, Factor II)
Primary purpose
Allocation
Interventional model
Masking
14 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal