Status
Conditions
Treatments
About
Pneumoconiosis is relatively prevalent in low/middle-income countries, and it remains a challenging task to accurately and reliably diagnose pneumoconiosis. The investigators implemented a deep learning solution and clarified the potential of deep learning in pneumoconiosis diagnosis by comparing its performance with two certified radiologists. The deep learning demonstrated a unique potential in classifying pneumoconiosis.
Full description
The investigators retrospectively collected a dataset consisting of 1881 chest X-ray images in the form of digital radiography. These images were acquired in a screening setting on subjects who had a history of working in an environment that exposed them to harmful dust. Among these subjects, 923 were diagnosed with pneumoconiosis, and 958 were normal. To identify the subjects with pneumoconiosis, the investigators applied a classical deep convolutional neural network (CNN) called Inception-V3 to these image sets and validated the classification performance of the trained models using the area under the receiver operating characteristic curve (AUC).
Enrollment
Sex
Volunteers
Inclusion criteria
Exclusion criteria
1,881 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal