Status and phase
Conditions
Treatments
About
Fractures of the lower leg are especially difficult for older adults. They are more likely to have serious complications, require longer healing times, and have a higher risk of death This occurs because their bodies cannot tolerate stress as well as younger individuals. The injury itself places significant strain on the body, and surgery adds additional stress.
Anesthesiologists use nerve blocks to help manage pain during and after these injuries. A nerve block is an injection that numbs the fracture and surgery area by blocking pain signals. These injections help patients need fewer opioid medications. However, new research shows these nerve blocks may provide benefits beyond pain management. Studies looking at older adults with hip fractures who received nerve blocks showed better overall outcomes: fewer deaths, fewer serious complications, and shorter hospital stays.
However, it is not currently known if nerve blocks work this well for other broken bones in the leg, like in the thigh or shin. Additional research is need to know if nerve blocks can help patients with all types of leg fractures recover faster and experience fewer problems.
Before the investigators start a large clinical trial, a small pilot study needs to be completed to determine if a larger clinical trial is feasible. This pilot study will evaluate the ability to recruit enough patients, ensure patients can receive the assigned treatment, collect data effectively, follow the study protocol, and track participants over time. The results will indicate whether the investigators are prepared to proceed with a full-scale trial and help refine the approach.
Full description
The potential for peripheral nerve blocks to improve clinical outcomes beyond analgesia is based on their ability to interrupt the physiologic stress response to surgical trauma near its origin. Tissue injury triggers nociceptive signals that travel through peripheral nerves to initiate a cascade of neuroendocrine and inflammatory responses, including the release of catecholamines, activation of the hypothalamic-pituitary-adrenal axis, and systemic inflammation. While younger patients can tolerate this stress response, older adults with limited physiologic reserve may experience organ dysfunction when these compensatory mechanisms become overwhelmed. By blocking afferent neural transmission before it reaches the central nervous system, peripheral nerve blocks may attenuate this cascade, potentially reducing sympathetic surge, myocardial oxygen demand, and the release of inflammatory mediators. Additionally, effective peripheral nerve blocks can reduce opioid requirements, avoiding adverse effects including respiratory depression, delirium, and impaired mobilization that particularly affect older adults. These mechanistic advantages may be especially important in older adults with lower extremity fractures, who face both the initial trauma and the additional physiologic burden of surgical repair.
While peripheral nerve blocks are well-established components of multimodal analgesia, emerging evidence suggests their benefits may extend beyond short-term analgesic effects. Recent studies of older adults with hip fractures have found peripheral nerve blocks are associated with additional benefits including reduced mortality, fewer serious adverse events, and increased days alive out of hospital. However, evidence for fractures distal to the hip remains limited. Although current Orthopaedic Trauma Association guidelines recommend peripheral nerve blocks as part of multimodal pain management for hip fractures, time pressures, and uncertainty about benefits beyond short-term analgesia have resulted in variable adoption among anesthesiologists and orthopaedic surgeons. Evidence supporting broader use of peripheral nerve blocks for improving clinical outcomes in lower extremity fractures is still needed.
To address this knowledge gap, a large multicenter randomized controlled trial is needed. However, prior to initiating such a trial, a pilot feasibility study will be conducted comparing pre-incision peripheral nerve blocks to no peripheral nerve blocks. The primary objective is to assess feasibility in terms of patient recruitment, adherence to treatment allocation, data collection methods, protocol compliance, and participant follow-up. This pilot phase will allow for refinement of the primary outcome measure, optimization of data collection procedures, establishment of recruitment rates, and identification of potential barriers to implementation before committing resources to a large-scale definitive trial.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Age ≥50 years
Isolated fractures
Radiographically confirmed lower extremity fracture requiring surgical fixation including:
Acute fracture receiving definitive fixation during injury hospitalization
4) Ability to provide informed consent (patient or legally authorized representative (LAR))
Exclusion criteria
Contraindication to peripheral nerve block
Active peripheral nerve blockade from initial injury analgesic management is defined as:
a. Risk of local anesthetic systemic toxicity
Neurologic or vascular injuries in the affected limb
Polytrauma with traumatic brain injury
Thoracic injury and/or abdominal injury requiring surgical intervention
Current enrollment in a conflicting clinical trial
Acute or Subacute residence prior to injury
Incarcerated at the time of enrollment
Prior enrollment in this trial
Unable to obtain informed consent due to language barrier
Unable to obtain informed consent because a legally authorized representative was unavailable.
Anticipated problems with follow-up compliance
Primary purpose
Allocation
Interventional model
Masking
34 participants in 2 patient groups
Loading...
Central trial contact
Arissa Torrie, MD, MHS; Heather Phipps, MPS
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal