Status
Conditions
Treatments
About
Purpose: The purpose of this study is to create prediction models for when major complications occur after elective colectomy surgery.
Justification: After surgery, patients can have multiple complications. Accurate risk prediction after surgery is important for determining an appropriate level of monitoring and facilitating patient recovery at home.
Objectives: Investigators aim to develop and internally validate prediction models to predict time-to-complication for each individual major medical complications (pneumonia, myocardial infarction (MI) (i.e. heart attacks), cerebral vascular event (CVA) (i.e. stroke), venous thromboembolism (VTE) (i.e. clots), acute renal failure (ARF) (i.e. kidney failure), and sepsis (i.e. severe infections)) or adverse outcomes (mortality, readmission) within 30-days after elective colectomy.
Data analysis: Investigators will be analyzing a data set provided by the National Surgical Quality Improvement Program (NSQIP). Descriptive statistics will be performed. Cox proportional hazard and machine learning models will be created for each complication and outcome outlined in "Objectives". The performances of the models will be assessed and compared to each other.
Full description
Background: Planned (elective or time sensitive) colectomy are performed for indications including cancer, inflammatory bowel disease (IBD), and diverticulitis. After colectomy, patients are at risk of a variety of major medical complications, including pneumonia, myocardial infarction (MI), cerebral vascular event (CVA), venous thromboembolism (VTE), acute renal failure (ARF), and sepsis. However, different complications tend to happen at different times after surgery. Accurate risk prediction, not only whether a complication may occur in a patient, but also when, is crucial for patient education, monitoring, and disposition planning. While several studies have explored the incidence and binary risk prediction for major complications after surgeries, there has been scarce literature on time-to-complication prediction modeling in recent population cohort data.
Objectives
Methods: Investigators will conduct a time-to-event survival analysis in a retrospective cohort using NSQIP®, a prospectively-collected multicentre dataset with more than 150 clinical variables within 30 days after surgery. This dataset includes information on whether the patient was diagnosed with major complications (in- or out-of-hospital) as well as the number of postoperative days to the diagnoses of complications, as defined by a standardized criteria within the NSQIP operations manual. The general dataset will be linked with the NSQIP® Procedure Targeted Colectomy dataset, which contains additional colectomy-specific variables.
The study will be reported according to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines and Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
130,000 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal