Status
Conditions
Treatments
About
In adult patients with acute respiratory distress syndrome (ARDS), the beneficial effects of prone position (PP) have been well investigated and explored; it reduces intrapulmonary shunt (Qs/Qt) and enhances lung recruitment, modifying both lung ventilation (VA) and lung perfusion (Q) distribution, finally generating an improvement in VA/Q matching and reversing oxygenation impairment;it reduces right ventricular afterload, increase cardiac index in subjects with preload reserve and reverse acute cor pulmonale in severe ARDS patients, but in infants and children there is still a lack of clear evidence. Taken together, these effects explain why PP improves oxygenation, limits the occurrence of ventilator-induced lung injury and improves survival.
Prone position is simple to perform in infants and in some neonatal and pediatric intensive care units is already commonly accomplished. However, a detailed analysis of the respective effects of high PEEP and prone position is lacking in infants/children with ARDS, while these two tools may interfere and/or act coherently. A recent multicenter, retrospective analysis of patients with pediatric acute respiratory distress syndrome (PARDS) describes how patients managed with lower PEEP relative to FIO2 than recommended by the ARDSNet model had higher mortality, suggesting that future clinical trials targeting PEEP management in PARDS are needed. We designed a physiological study to investigate the physiological effects of prone positioning on lung recruitability in infants/children with acute respiratory distress syndrome.
Full description
Each patient meeting inclusion criteria will be evaluated for the presence of the oxygenation criterion. After neuromuscular paralysis (or apnoeic ventilation as per PICU protocol), and endotracheal suctioning, eligible patients will be ventilated for 30 min with PEEP = 5 cmH2O in the semi-recumbent position, with a tidal volume limited to 6 mL/kg and a Plateau Pressure less than 30 cmH2O. FiO2 will be titrated to obtain and SpO2 >92 % and <98 %. Afterward, arterial blood gas analysis (ABG) will be performed to compute PaO2/FiO2 ratio to confirm the presence of the inclusion and the absence of exclusion criteria.Patients showing PaO2/FiO2 ≤ 200 mmHg will be enrolled. Eligible patients will undergo the following protocol:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
15 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal