Status
Conditions
Treatments
About
Hemiparetic gait is characterized by strong asymmetries that could severely affect the quality of life of stroke survivors. This asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the non-paretic limb.
In this study, the investigators aim to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and non-paretic lower limbs. To this end, the investigators use a unilateral active Knee-Ankle-Foot Orthosis able to assist the paretic limb of hemiparetic patients during gait.
The system is able to synchronize its action with the movement of the unassisted joints, promoting a natural and intuitive interaction. The device generate the assistance according to two differents strategies: (1) Replicating the movement of the helathy leg or (2) Inducing a healthy gait pattern on the paretic leg.
The hypothesis is that a proper and natural interaction between the user and the exoskeleton would enable the patients to consider the robot action as a part of their own gait capability, improving their gait quality as consequence. Hemiparetic asymmetry is not only due to impairments in the affected limb, but also it is the consequence of biomechanical compensatory mechanisms that might arose in the non-paretic leg. We aim to assess the adaptation process of the subject to the exoskeleton assistance, and to evaluate the effects of such human-robot interaction in both paretic and non-paretic legs.
Full description
Brief name: Proof-of-concept of a unilateral robotic knee exoskeleton and evaluation of its effects over gait symmetry.
Materials: The investigators have developed a Knee-Ankle-Foot orthosis (KAFO) composed of two joints aligned to the knee and ankle of the user. The length of its bars and the positions of its braces can be tailored to the anthropometry of different users. The knee joint is actuated by a DC brushless motor EC-60 flat 408057 (Maxon ag, Switzerland) coupled with a harmonic drive CSD-20-160-2AGR (Harmonic Drive LLC, EE.UU.). The transmission ratio of 1:60 of this system enables the application of a mean torque of 35Nm. The ankle joint of the prototype remains non-actuated and unlimited, enabling its free movement in the sagittal plane. The total weight of the KAFO is about 4kg.
The prototype is equipped with sensors that provide information on system variables that are used for its control in real-time, such as the flexion angle of the robot joint or the interaction torque between user and robot. In addition, the gait kinematic of the user is measured by Inertial Measurement Units (IMUs) and the contact of both feet with the floor by Force Sensing Resistors (FSRs).
The system uses an Adaptive Frequency Oscillator to estimate the continuous gait phase of the contralateral limb and synchronically assists the paretic leg following two different control strategies: (1) Replicating the movement of the sound leg (Echo Strategy) or (2) Inducing a healthy gait pattern on the paretic leg (Pattern strategy). The action of the robot depends on the gait phase of the assisted leg: during stance the robot reinforces the limb so the system composed of the leg and the exoskeleton can load the user's weight and not collapse, while during the swing phase the robot guides the limb's movement according to the Assisted-As-Needed (AAN) paradigm creating a force tunnel around the prescribed trajectory.
Healthy subjects also performed a previous trial under variable gait speed (VariableSpeed). They walked over the treadmill as in the NoExo condition, although the gait speed randomly varies from 1km/h to 3km/h in 0.2km/h steps for 15 seconds at least.
Both researchers monitor fidelity to the intervention by direct supervision.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria: Ischemic or hemorragic stroke that lead to hemiplegic gait or healthy subjects without gait impairements. Same number os subjects is recruited
Exclusion Criteria:
Primary purpose
Allocation
Interventional model
Masking
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal