ClinicalTrials.Veeva

Menu

PSMA-PET: Deep Radiomic Biomarkers of Progression and Response Prediction in Prostate Cancer

C

Centre hospitalier de l'Université de Montréal (CHUM)

Status and phase

Enrolling
Phase 3

Conditions

Prostate Cancer

Treatments

Diagnostic Test: 18F-DCFPyL IV injection

Study type

Interventional

Funder types

Other

Identifiers

Details and patient eligibility

About

Prostate cancer (PCa) is the most common non-skin malignancy and the third leading cause of cancer death in North American men. The accurately mapped metastatic state is a necessary prerequisite to guiding treatment in practice and in clinical trials. Imaging biomarkers (BMs) can provide information on disease volume and distribution, prognosis, changes in biologic behavior, therapy-induced changes (both responders and non-responders), durations of response, emergence of treatment resistance, and the host reaction to the therapies.

Of particular relevance to metastatic prostate cancer is the emergence of a promising imaging technique involving new prostate specific membrane antigen (PSMA) positron emission tomography (PET) tracers. This approach has demonstrated higher sensitivity in detecting metastases, prior to and during therapy, than current imaging standard of care (CT and bone scan), and is not widely clinically available outside of the research realm in North America.

Positron emission tomography / computer tomography (PET/CT) is a nuclear medicine diagnostic imaging procedure based on the measurement of positron emission from radiolabeled tracer molecules in vivo. PSMA is a homodimeric type II membrane metalloenzyme that functions as a glutamate carboxypeptidase/folate hydrolase and is overexpressed in PCa. PSMA is expressed in the vast majority of PCa tissue specimens and its degree of expression correlates with a number of important metrics of PCa tumor aggressiveness including Gleason score, propensity to metastasize and the development of castration resistance.

[18F]DCFPyL is a promising high-sensitivity second generation PSMA-targeted urea-based PET probe. Studies employing second-generation PSMA PET/CT imaging in men with biochemical progression after definitive therapy suggest detection of metastases in over 60% of men imaged.

Deep learning is defined as a variant of artificial neural networks, using multiple layers of 'neurons'. Deep learning has been investigated in medical imaging in numerous applications across organ systems. In oncology, basic artificial neural networks to support decision-making have previously been developed retrospectively in breast cancer and prostate cancer, but have not been validated or integrated prospectively. Novel data-driven methods are needed to predict outcomes as early as possible in order to guide the duration and the aggressiveness of a particular therapy. They are also needed for optimal patient selection based on the patient's response to a given therapy.

Here the investigators hypothesize that the combination of a highly performing prostate cancer imaging technique combined with machine learning has high potential. The main objective of this study is to acquire PSMA-PET data in patients with prostate cancer who receive treatment and follow-up in order to enable the discovery of predictive imaging biomarkers through deep learning techniques.

Enrollment

1,000 estimated patients

Sex

Male

Ages

18+ years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • Patients with prostate cancer, being followed and treated at CHUM, whose treating physician at CHUM has requested a PSMA-PET scan.

Exclusion criteria

  • Claustrophobia/inability to complete imaging procedure.

Trial design

Primary purpose

Diagnostic

Allocation

N/A

Interventional model

Single Group Assignment

Masking

None (Open label)

1,000 participants in 1 patient group

Main arm
Experimental group
Description:
PET-CT imaging following 18F-DCFPyL injection, 1 injection, IV, 10 mCi
Treatment:
Diagnostic Test: 18F-DCFPyL IV injection

Trial contacts and locations

1

Loading...

Central trial contact

Daniel Juneau, MD

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2025 Veeva Systems