ClinicalTrials.Veeva

Menu

Radiomics-based Artificial Intelligence System to Predict Neoadjuvant Treatment Response in Rectal Cancer (MRAI-pCR)

Sun Yat-sen University logo

Sun Yat-sen University

Status

Unknown

Conditions

Rectal Cancer

Study type

Observational

Funder types

Other

Identifiers

NCT04273477
MRILARC-pCR2020

Details and patient eligibility

About

In this study, investigators utilize a radiomics prediction model to predict the tumor response to neoadjuvant chemoradiotherapy (nCRT) before the nCRT is administered for patients with locally advanced rectal cancer (LARC). Previously, the radiomics prediction model has been constructed based on the radiomics features extracted from pretreatment Magnetic Resonance Imaging (MRI) in the training set, and optimized in the external validation set. The predictive power of this radiomics prediction model to discriminate the pathologic complete response (pCR) patients from non-pCR individuals, will be further verified in this prospective, multicenter clinical study.

Full description

This is a multicenter, prospective, observational clinical study for validation of a radiomics-based artificial intelligence (AI) prediction model. Patients who have been pathologically diagnosed as rectal adenocarcinoma and defined as clinical II-III staging without distant metastasis will be enrolled from the Sixth Affiliated Hospital of Sun Yat-sen University, the Third Affiliated Hospital of Kunming Medical College and Sir Run Run Shaw Hospital Affiliated by Zhejiang University School of Medicine. All participants should follow a standard treatment protocol, including concurrent neoadjuvant chemoradiotherapy (nCRT), total mesorectum excision (TME) surgery and adjuvant chemotherapy. Enhanced Magnetic Resonance Imaging (MRI) examination should be completed before the administration of nCRT treatment. The tumor volumes at high solution T2-weighted, contrast-enhanced T1-weighted and diffusion weighted images will be manually delineated, respectively. The outlined MRI images will be captured by the radiomics prediction model to generate a predicted response ("predicted pCR" vs. "predicted non-pCR") of each patient, whereas the true response ("confirmed pCR" vs. "confirmed non-pCR") is derived from pathologic reports after TME surgery serving as the gold standard for evaluation. The prediction accuracy, specificity, sensitivity and Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) curves will be calculated. This study is aimed to provide a reliable and accurate AI system to predict the pathologic tumor response to nCRT before its administration, which might facilitate the identification of pCR candidates for further precision therapy among patients with locally advanced rectal cancer.

Enrollment

100 estimated patients

Sex

All

Ages

18 to 75 years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • pathologically diagnosed as rectal adenocarcinoma
  • defined as clinical II-III staging (≥T3, and/or positive nodal status) without distant metastasis by enhanced Magnetic Resonance Imaging (MRI)
  • intending to receive or undergoing neoadjuvant concurrent chemoradiotherapy (5-fluorouracil based chemotherapy, given orally or intravenously; Intensity-Modulated Radiotherapy or Volume-Modulated Radiotherapy delivered at 50 gray (Gy) in gross tumor volume (GTV) and 45 Gy in clinical target volume (CTV) by 25 fractions)
  • intending to receive total mesorectum excision (TME) surgery after neoadjuvant therapy (not completed at the enrollment), and adjuvant chemotherapy
  • MRI (high-solution T2-weighted imaging, contrast-enhanced T1-weighted imaging, and diffusion-weighted imaging are required) examination is completed before the neoadjuvant chemoradiotherapy

Exclusion criteria

  • with history of other cancer
  • insufficient imaging quality of MRI to delineate tumor volume or obtain measurements (e.g., lack of sequence, motion artifacts)
  • incomplete neoadjuvant chemoradiotherapy
  • no surgery after neoadjuvant chemoradiotherapy resulting in lack of pathologic assessment of tumor response
  • tumor recurrence or distant metastasis during neoadjuvant chemoradiotherapy

Trial contacts and locations

3

Loading...

Central trial contact

Xiangbo Wan, MD, PhD

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems