Status and phase
Conditions
Treatments
About
Current study will render insight in to the role of renal hypoxia in the diabetic kidney and is able to associate its finding with measurements of renal perfusion and glomerular filtration rate. Moreover, this research will focus on the effects of sodium-glucose cotransporter 2 inhibition on renal tissue oxygenation and oxygen consumption as well as a change in intrarenal hemodynamics and perfusion, and a shift of fuel metabolites. Elucidation the mechanisms underlying the effects of SGLT2 inhibition will advance our knowledge and contribute to their optimal clinical utilization in the treatment of chronic kidney disease in diabetes and possibly beyond.
Full description
Sodium-glucose cotransporter-2 inhibitors (SGLT2-i) are a relatively new class of drugs in the treatment of diabetes and improve glycemic control by blocking SGLT-2 in the proximal tubule, the main transporter of coupled sodium-glucose reabsorption Three large cardiovascular outcome trials (EMPA-REG, CANVAS, DECLARE- TIMI 58) showed SGLT-2 inhibition to have a renoprotective effect, including on renal outcomes. Moreover, the recently publicized CREDENCE trial concluded early after the planned interim analyses showed a striking renoprotective effect of SGLT-2 inhibition in patients with T2DM and CKD. The mechanisms underlying their beneficial effects remain to be elucidated, as the small SGLT-2 induced reduction in glucose level (0.5% HbA1c), bodyweight (about 3%), systolic blood pressure (about 4 mmHg), or uric acid (about 6%) are insufficient to fully account for the effect.
The pathological mechanisms underlying DKD involve complex interactions between metabolic and haemodynamic factors which are not fully understood. However, accumulating evidence of foremost animal studies indicates that a chronic state of renal tissue hypoxia is the final common pathway in the development and progression of diabetic kidney disease. Therefore several hypothesis have been proposed on the alleviation of chronic tissue hypoxia following SGLT-2 inhibition: (1) A decrease in workload by a decrease in GFR. (2) A shift in renal fuel energetics by increasing ketone body oxidation, which renders high ATP/oxygen consumption ratio's compared to glucose or free fatty acids. (3) An improvement of cardiac function and systemic hemodynamics to lead to an increase in renal perfusion, and (4) an increase in erythropoietin (EPO) levels to stimulate oxygen delivery.
Current study will examine the above hypothesis by researching renal oxygenation by BOLD-MRI, oxygen consumption by PET-CT, and hemodynamic kinetics by the Iohexol clearance method/contrast-enhance ultrasound/arterial spin labeling. Blood sampling will allow for the measurement of EPO and ketone bodies, as well as a resting energy expenditure will elucidate a shift in use of energy substrate metabolism. The research will be performed in T2DM without overt kidney disease (n=20) before and after a 4 week treatment with SGLT-2 inhibition (ertugliflozin), and will be compared the obtained results from healthy controls (n=20).
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Group 1: T2DM patients
Inclusion criteria
Exclusion criteria
Group 2: Age-matched and eGFR-matched non-diabetic controls Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
40 participants in 2 patient groups, including a placebo group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal