Status
Conditions
Treatments
About
Sensorimotor impairments following stroke often involve complex pathological changes across multiple joints and multiple degrees of freedom of the arm and hand, thereby rendering them difficult to diagnose and treat. The objective of this study is to evaluate multi-joint neuromechanical impairments in the arm and hand, then conduct impairment-specific treatment, and determine the effects of arm versus hand training and the effects of passive stretching before active movement training.
Full description
Sensorimotor impairments following stroke can lead to substantial disability involving the upper extremity. These impairments often involve complex pathological changes across multiple joints and multiple degrees-of-freedom of the arm and hand, thereby rendering them difficult to diagnose and treat. Many potential mechanisms, such as weakness, motoneuronal hyperexcitability, and elevated passive impedance, can contribute and it is currently unclear where to focus treatment. The objectives of this study are to address allocation of therapy resources between the arm and hand and to examine the benefits of combining passive stretching with active movement training.
Aim 1. To compare the efficacy of training the arm versus the hand in promoting upper extremity rehabilitation.
Hypothesis 1: Treating the proximal larger joints in the arm alone will lead to greater improvement than treating the distal hand alone.
Aim 2. To examine the efficacy of combining passive stretching with active (assistive or resistive) training for the shoulder, elbow, wrist, and hand.
Hypothesis 2: Multi-joint intelligent stretching followed by active (assistive or resistive) movement facilitated by use of the IntelliArm arm rehabilitation robot and a Hand rehabilitation robot will improve motor control of the upper extremity more than standard movement therapy alone.
Subjects will be assigned randomly with equal chance to one of four groups. Groups are split into 2 conditions based on stretching and 2 conditions based on target of intervention (arm or hand). Half of all the subjects will be assigned to the stretching groups and the other half to the passive movement groups. Half of the subjects will be assigned to the arm-training and the remaining half to hand-training groups. Arm-training groups will use the IntelliArm, hand-training groups will use the hand robot. For those assigned to the stretching groups, subjects will complete up to 30 minutes of passive stretching with the IntelliArm or the hand robot. For those assigned to the passive movement condition, subjects will do the robot according to their group assignment and wear it for up to 30 minutes with little to no stretching preceding the active therapy session. For each group, the initial about 30 minutes of stretching or relaxing will be followed by 45-60 minutes of active therapy with the IntelliArm or hand robot (depending on group assignment), for a total session time of 75-90 minutes.
The 4 groups of subjects will be compared against each other.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
72 participants in 4 patient groups
Loading...
Central trial contact
Soh-Hyun Hur; Kyung Koh, Ph.D.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal