Status
Conditions
Treatments
About
The proposed mechanistic trial will test the effect of dietary sodium reduction on cardiac and vascular structure and function in those with elevated blood pressure or hypertension. Findings from this study will fill the knowledge gap on the underlying mechanisms of dietary sodium intake on cardiovascular disease risk in addition to blood pressure and could provide further evidence on sodium reduction for the prevention of cardiovascular disease.
Full description
High dietary sodium intake increases risk of cardiovascular disease (CVD) independent of established risk factors, including blood pressure (BP). Non-BP mediated mechanisms underlying the increased risk of CVD associated with dietary sodium intake are not well understood, but observational studies suggest direct target organ damage in the heart and vasculature might play an important role. Little evidence exists from randomized controlled trials (RCTs) on target organ effects of dietary sodium reduction, and the National Academy of Medicine has recommended future research to "test the effects of different sodium intake levels on endothelial and vascular function" in order to "to better characterize the relationship between sodium intake and chronic disease". The overall objective of the proposed mechanistic trial is to test the effect of dietary sodium reduction on cardiac and vascular structure and function. Specifically, the proposed trial will test whether dietary sodium reduction (targeting a dietary sodium intake of <2,300 mg/day) will improve left ventricular mass index (LVMI), left ventricular global longitudinal strain (LVGLS), carotid-femoral pulse wave velocity (cfPWV), and flow-mediated dilation (FMD) compared to usual intake. Additionally, we will test whether this effect is independent from BP reduction. We will recruit 256 people with elevated BP or hypertension from the greater New Orleans area and randomly assign them to a dietitian-led behavioral intervention aimed at decreasing dietary sodium intake to <2,300 mg/day for 12 months or to a usual diet. Study outcomes, including cardiac magnetic resonance imaging (CMR)-determined LVMI and LVGLS, cfPWV, and FMD, will be measured at baseline, 6-month, and 12-month clinic visits using standardized protocols with stringent quality control. These outcomes are validated biomarkers for target organ damage and predict the risk of clinical CVD events. In primary analyses, the effect of sodium reduction on each subclinical CVD endpoint will be compared between the sodium reduction and usual diet groups according to the intention-to-treat principle without adjusting for covariates. In secondary analyses, changes in ambulatory and clinical BP will be adjusted to assess the BP-independent effect of dietary sodium reduction on each subclinical CVD endpoint. The proposed trial has 85% statistical power to detect a clinically significant difference in changes of the four co-primary outcomes (10 g/m2 in LVMI, 1.3% in LVGLS, 0.9 m/s in cfPWV, and 1.1% in FMD) over 12 months between the two groups at a 2-sided significance level of 0.0125 (0.05/4). Findings from this trial will fill the knowledge gap of the underlying mechanisms of dietary sodium intake on CVD risk and provide further evidence on sodium reduction for CVD prevention.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
256 participants in 2 patient groups
Loading...
Central trial contact
Marigny Bostock, MA, CHES
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal