Status
Conditions
Treatments
About
The overarching aim of the project is to assess whether structure learning is an effective tool to train and improve cognitive flexibility and whether this is transferable to learning and other cognitive skills. The investigators will employ a multi-modal approach that combine both cognitive-behavioural and neuroimaging measures to examine how functional brain activations and/or cognitive performances are affected when participants go through a structure learning training paradigm relative to a working memory training paradigm (active control) or a no-training paradigm (passive control).
Full description
Cognitive flexibility is critical for humans to perform complex tasks and ensures that humans exhibit appropriate behaviour in response to changing environments. Successful implementation of cognitive flexibility involves several sub-domains within executive functions. Prior researches on cognitive flexibility has portrayed it as various aspects of human cognition ranging from a cognitive skill related to set-shifting, or a by-product of cognitive processes, to part of the cognitive system. The operationalization of cognitive flexibility has been particularly difficult due to its multi-faceted nature. Current flexibility interventions and neuroimaging studies examining cognitive flexibility commonly utilise tasks that taps on to executive functions such as task-set switching or the Dimensional Change Card Sort (DCCS) task. Although effective, one concern related to using these tasks is that it does not tap merely into cognitive flexibility but also activate other executive functions such as inhibition and working memory. Hence, this reduces the precision and specificity of these tasks as training tools. The present project proposed structure learning as a more fundamental and apt training approach. It involves seeking patterns in the stochastic presentations of stimuli, without the need for explicit feedback and is in itself a basic building block for cognitive flexibility.
In the educational context, structure learning is analogous to patterning, a crucial cognitive ability that underpins mathematical and reading skills. Prior research has demonstrated a close relationship between pattern understanding and cognitive flexibility. Hence, structure learning training could potentially be beneficial in improving one's cognitive flexibility. Furthermore, emerging evidence has demonstrated that domain-general training of structure learning skills produced learning that transfer well beyond the learning task. However, there is a paucity in studies that examined whether structure learning training per se could produce generalisable improvements in cognitive flexibility. The present study aims to address this gap by examining if structure learning training, relative to working memory training and having no training, could produce changes in neural markers that relate to potential gains in cognitive flexibility.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
108 participants in 2 patient groups
Loading...
Central trial contact
Xiaoqin Cheng, PhD; Chia-lun Liu, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal