Status
Conditions
Treatments
About
Colonoscopy is currently the best method of detection of intestinal tumors and polyps, particularly because polyps can also be biopsied and removed. There is a clear correlation between the adenoma detection rate and prevented carcinomas, so adenoma detection rate is the main parameter for the outcome quality of diagnostic colonoscopy. The efficiency of preventive colonoscopy needs optimisation by increase in adenoma detection rate, as it is known from many studies that approximately 15-30% of all adenomas can be overlooked. This mainly applies to smaller and flat adenomas. However, since even smaller polyps may be relevant for colorectal cancer development, the aim of colonoscopy should be to preferably be able to recognize all polyps and other changes.The latest and by far the most interesting development in this field is the use of artificial intelligence systems. They consist of a switched-on software with a small computer connected to the endoscope processor; the patient's introduced endoscope is completely unchanged.
The present study therefore compares the adenoma detection rate (ADR) of the latest generation of devices with high-resolution imaging from Fujifilm with and without the connection of artificial intelligence.
Full description
Methods of Computer Vision (CV) and Artificial Intelligence (AI) provide completely new opportunities, e.g. in the automatic polyp detection and differentiation of a lesion based on its endoscopic image. Computer vision using artificial intelligence methods means the application of "trained" so-called deep neural net (DNN) with a set of defined images (e.g. everyday scenes) and well-known solutions ( e.g. name of the pictured item; c.f. e.g. the "ImageNet Challenge"). The technical feasibility of using AI algorithms in endoscopy has already been proven in many cases. In the present study, it is an AI system from Fujifilm, which is already clinically usable. By using Fujifilm high-resolution imaging devices in colonoscopies, AI will be added randomly.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
1,572 participants in 2 patient groups
Loading...
Central trial contact
Guido Schachschal, PD Dr.; Thomas Rösch, Prof. Dr.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal