Status
Conditions
Treatments
About
Periventricular Leukomalacia (PVL) is a white matter lesion surrounding the lateral ventricles of the brain occurring in the prenatal period, associated with a disorder of movement and posture, known as bilateral cerebral palsy. Children with PVL and bilateral cerebral palsy have spared verbal abilities, as measured by verbal Intelligence Quotient (verbal IQ) tests, while non-verbal intelligence and especially visuo-perceptual and visuo-spatial abilities are impaired. In addition some studies underline the impact of PVL also on executive function, especially in terms of working memory and in the ability to inhibit distraction.
Working Memory is the ability to retain and manipulate information for brief periods of time. It is important in several complex cognitive functions, such as academic learning and in planning and organizing daily life activities. School-based activities, indeed, such as math and reading depend on a student's ability to pay attention to several instructions or information and to hold and integrate them in their mind.
Recent behavioural and neurofunctional studies describes the effect of an evidence-based and computer-based training on working memory, the Cogmed Working MemoryTraining. Functional MRI show increase in parietal and prefrontal activity after this training, while the behavioural data demonstrate the generalization of this effect also on cognitive functions not directly trained, as attention, inhibition, learning and non-verbal reasoning. Cogmed Working MemoryTraining (RoboMemo®, CogMed-Cognitive Medical Systems, Stockholm, Sweden) is an online treatment comprising a number of visuo-spatial and verbal exercises that vary automatically depending on the individual child's performance in any given task. The training period is intensive and includes 25 home session for five weeks, 30-45 minutes each day. A Cogmed-trained coach monitors training progress and participants' commitment daily.
Only one ongoing study has used the CogMed training in children with cerebral palsy, but without investigating the correlation between behavioural findings with neurofunctional data.
The aim of this study is to analyze the effect of the working memory training with CogMed on trained and not directly trained cognitive abilities and on the changes in cortical electrophysiological reorganization during the sleep after training. The sleep analysis will be focused in particular on the slow waves activity [frequency range of 1-4.5 Hz] and on the sleep spindle [frequency range of 12-14Hz], which reflect the depth of sleep and are related to memory processes, learning and brain plasticity.
The results of this project will shed light on the mechanisms of neuroplasticity, by enhancing knowledge on the neuropsychological effects of a specific working memory training and on the neurophysiological underpinnings of these behavioural effects in a clinical population of children with congenital brain lesions, as PVL.
Full description
The procedures implemented to register patients data will include the following steps:
Initial time point (T1) will correspond to pre-training assessment for both Clusters; Second time point (T2) will be provided after 6 or 7 weeks from T1 and will coincide with post-training assessment for the Cluster B and an other pre-training assessment for the Cluster A; Finally time point (T3), after 6 or 7 weeks from T2, will constitute the post-training assessment for Cluster A.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
20 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal