ClinicalTrials.Veeva

Menu

Telomere and Telomerase

University of Kansas logo

University of Kansas

Status

Withdrawn

Conditions

Acute Myeloid Leukemia

Treatments

Genetic: Blood sample

Study type

Observational

Funder types

Other

Identifiers

Details and patient eligibility

About

Researchers hope to determine if the DNA is shortened in your body and determine if there is an increase in the protein that shortens DNA called telomerase.

Full description

A telomere is a region of repetitive DNA at the end of chromosomes, which protects the end of the chromosome from destruction. Telomeres can be viewed as the tips on the ends of shoelaces that keep them from unraveling. Telomeres compensate for incomplete semi-conservative DNA replication at chromosomal ends. In absence of a reparative process, DNA sequences would be lost in every replicative phase until they reached a critical level, at which point cell division would stop.

Loss of telomeres leads to chromosome end-to-end fusion, chromosome re-arrangements, and genome instability.

Telomerase is a "ribonucleoprotein complex" composed of a protein component and an RNA primer sequence which acts to protect the terminal ends of chromosomes. Telomerase is the natural enzyme which promotes telomere repair. It is however not active in most cells. It certainly is active though in stem cells, germ cells, hair follicles and in 90 percent of cancer cells. Telomerase functions by adding bases to the ends of the telomeres. As a result of this telomerase activity, these cells seem to possess a kind of immortality.

Progressive shortening or attrition of telomere length with consequent genomic instability leading to cancer has been described in various hematological malignancies including acute and chronic myeloid leukemia.

Reduced telomere length has been documented in patients with the progressive BM failure syndrome called Dyskeratosis Congenita. Abnormalities in these patients include skin pigmentation, nail dystrophy and leukoplakia. Mutations in the telomere maintenance mechanism have been implicated in the pathogenesis of this heterogeneous condition.

Myelodysplastic syndrome is an acquired clonal stem cell disorder characterized by in-effective hematopoiesis, increased intra-medullary apoptosis and peripheral cytopenia. A number of such patients will eventually develop worsening cytopenia evolving into acute myeloid leukemia. A number of studies have investigated telomerase activity and telomere length in patients with MDS and AML. Telomere shortening was significantly more pronounced in patients with cytogenetic alterations as compared to patients with normal karyotypes.

Genomic instability develops with progressive telomere shortening. The Telomere attrition related genome instability is a stress that leads to up-regulation of specified DNA damage foci. These telomere-associated DNA damage points are often called as Telomere Dysfunction-Induced Focus (TIF).

Sex

All

Ages

18+ years old

Volunteers

No Healthy Volunteers

Inclusion and exclusion criteria

Inclusion Criteria:

  • Diagnosis of advanced Myelodysplastic Syndrome (MDS) or acute myeloid leukemia
  • must be 18 years of age
  • must be able to give written informed consent

Trial design

0 participants in 1 patient group

advanced Myelodysplastic Syndrome or acute myeloid leukemia
Description:
advanced MDS and AML with/without associated cytogenetic abnormality
Treatment:
Genetic: Blood sample

Trial contacts and locations

1

Loading...

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems