Status
Conditions
Treatments
About
In the proposed study, the investigators will aim to develop and pilot a Magnetic Resonance (MR) imaging protocol and assess its ability to achieve the following: quantification of tumour burden and bone loss, detecting longitudinal changes in tumour load with therapy and detecting longitudinal changes in microarchitecture with therapy. The investigators also aim to investigate whether bone loss is better, worse or the same with different imaging techniques. This will be investigated by correlating the DXA imaging data with Diffusion-Weighted Magnetic Resonance Imaging (DWMRI) to see if it is possible to achieve quantifiable data of bone density.
Full description
In the proposed study, the investigators will aim to develop and pilot a Magnetic Resonance (MR) imaging protocol and assess its ability to achieve the following: quantification of tumour burden and bone loss, detecting longitudinal changes in tumour load with therapy and detecting longitudinal changes in microarchitecture with therapy. The investigators also aim to investigate whether bone loss is better, worse or the same with different imaging techniques. This will be investigated by correlating the DXA imaging data with Diffusion-Weighted Magnetic Resonance Imaging (DWMRI) to see if it is possible to achieve quantifiable data of bone density.
Using the expertise of the Oxford Centre For Clinical Magnetic Resonance Research (OCMR) for imaging protocol development, and the new Fine Structural Analysis (FSA, Osteotronix Ltd, formerly Acuitas Medical) bone density quantification MRI method (Rafferty et al 2016), the investigators will test a single protocol which combines three emerging experimental imaging sequences into a simple, non-invasive whole body imaging protocol to quantify disease burden and bone disease. This has never been done before; if shown to be feasible, such a method would have two important applications: to precisely guide commissioned therapies in the clinic, so improving patient management; and as an exciting, novel research tool for the longitudinal combined assessment of tumour burden and cancer-induced bone disease in response to therapy.
The investigators hypothesize that this imaging tool will be superior to the combined current standard-of-care investigations in the quantification of tumour burden and bone loss. There are currently no tools available for quantifying structural changes to bone and overall bone loss in myeloma.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria (All Groups):
Inclusion Criteria (Groups 1 and 2):
Exclusion Criteria (All Groups):
Exclusion Criteria (Groups 1 and 2):
67 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal