Status
Conditions
Treatments
About
Adolescent idiopathic scoliosis (AIS) is a three-dimensional complex progressive structural deformity of the growing spine. Asymmetric changes in both the anatomical structure and strength of the muscles due to deformity affect weight distribution and joint moments in the trunk and lower extremities. As the spine transfers loads through the pelvis, asymmetry in the spinal alignment creates structural or functional changes involving other parts of the kinetic chain. The deviations caused by the deformity in all three planes and the responses to it affect the kinetics and kinematics of the trunk and extremities. A number of kinetic and kinematic changes such as decreased hip muscle strength, asymmetric lateral stepping, decreased hip and pelvic joint range of motion, especially in the frontal and transverse planes, and ground reaction force asymmetry has been demonstrated in patients with AIS. Understanding the postural changes and correction strategies that affect the displacement of the center of mass, ground reaction force and center of pressure during standing and walking in adolescents with idiopathic scoliosis is fundamental to understanding the nature of the disease, disease management and guiding rehabilitation both conservative treatment and after surgery. Based on this, it was aimed to objectively measure the biomechanical effects of the forces applied to the body in the brace to control deformity and prevent progression during the growth period, to determine postural control strategies, kinetic and kinematic changes in these patients with treatment by applying MOOR-S model brace and Schroth Three-Dimensional Scoliosis Exercise Treatment as a conservative treatment method on patients with AIS. In addition, it was also aimed to determine lower extremity inequality by measuring dynamic leg length with gait analysis in individuals with functional leg length discrepancy due to scoliosis.
Full description
Adolescent idiopathic scoliosis (AIS) is a three-dimensional complex progressive structural deformity of the growing spine. Asymmetric changes in both the anatomical structure and strength of the muscles due to deformity affect weight distribution and joint moments in the trunk and lower extremities. As the spine transfers loads through the pelvis, asymmetry in the spinal alignment creates structural or functional changes involving other parts of the kinetic chain. The deviations caused by the deformity in all three planes and the responses to it affects the kinetics and kinematics of the trunk and extremities. Various postural compensatory strategies emerge to maintain a stable position and energy conservation in deviation of the center of mass. Thorax-pelvis coordination plays an important role in maintaining the stability of the whole body in normal walking, the thorax and pelvis counter-rotate towards each other, minimizing the angular momentum of the trunk. In individuals with idiopathic scoliosis, higher in-phase and lower anti-phase coordination in the transverse planes in walking; less coordination consistency were observed in the transverse and frontal planes compared to healthy controls. Most of the studies on gait in AIS have concluded that there is no significant difference in walking speed, cadence and stride width in scoliosis patients and healthy controls. However, decreased hip and pelvic motion, increased energy consumption for gait, step pattern asymmetry, and ground reaction force asymmetry were observed in patients with AIS. A number of kinetic and kinematic changes such as decreased hip muscle strength, asymmetric lateral stepping, decreased hip and pelvic joint range of motion, especially in the frontal and transverse planes, and ground reaction force asymmetry has been demonstrated in patients with AIS. None of the studies included follow-up, most of them did not use EMG, the relationship with curvature types was not clearly revealed, and no treatment effect and follow-up results were evaluated. With this study, the deficiency in the literature will be tried to be overcome, especially in terms of the effect of conservative treatment on gait. Understanding the postural changes and correction strategies that affect the displacement of the center of mass, ground reaction force and center of pressure during standing and walking in adolescents with idiopathic scoliosis is fundamental to understanding the nature of the disease, disease management and guiding rehabilitation both conservative treatment and after surgery. Based on this, it was aimed to objectively measure the biomechanical effects of the forces applied to the body in the brace to control deformity and prevent progression during the growth period, to determine postural control strategies, kinetic and kinematic changes in these patients with treatment by applying MOOR-S model brace and Schroth Three-Dimensional Scoliosis Exercise Treatment as a conservative treatment method on patients with AIS. In addition, it was also aimed to determine lower extremity inequality by measuring dynamic leg length with gait analysis in individuals with functional leg length discrepancy due to scoliosis. Individuals who are diagnosed with AIS and decided to treat a brace, Cobb angle between 20-45 degree and age between 10-18, will be included in the study. Participants will be divided into three groups. The first group will receive MOOR-S brace treatment, the second group will receive the MOOR-S brace and Schroth Three-Dimensional Scoliosis Exercise Treatment, and the third group will not receive any intervention, this group will consist of healthy volunteers from the same age group. Full-time brace treatment will be given to the treatment groups for three months and the second group will be given a home exercise program four days a week and they will perform once a week under physiotherapist supervision. The body center of mass, ground reaction force, range of motion, joint moments and strengths, spinal flexibility, muscle activity in gait, dynamic deviation of the rotational trunk-pelvis segment position, position and orientation of the body segments in three planes, will determine statically and dynamically when they walking, it will be analyzed before and after three months treatment, patients with AIS will be compared with their healthy peers, and the effects of treatment on gait will be determined in the study sample.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
45 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal