Status
Conditions
Treatments
About
Shoulder impingement syndrome is the most common shoulder disorder in overhead athletes. It describes a mechanical compression of subacromial bursa and rotator cuff tendons during arm movement, which results in pain and injuries. Most of previous studies focus on investigating motor performance in individuals with shoulder impingement syndrome and found altered scapular kinematics and muscle activation may contribute to the impingement. Recently few studies found changes in the central nervous system, decreases in corticospinal excitability and increases in inhibition in scapular muscles, by using transcranial magnetic stimulation (TMS). Although more studies are still needed to investigate the changes in central nervous system in the individuals with impingement syndrome, the changes in central nervous system are believed to be associated with the deficits of impingement syndrome. However, the exercise protocols for the impingement syndrome are usually designed to restore scapular kinematics and muscle activation, including scapular muscle strengthening exercise and scapular control exercise. To our knowledge, no study has investigated whether these exercise protocols can reverse these changes in the corticospinal system. The objectives of this proposal are to understand neuromuscular and neurophysiological mechanisms of the scapula-focused exercise protocols to improve the effectiveness of treatment. The study aims to investigate the effects of scapular muscle strengthening training and scapular control training on the scapular kinematics, muscle activation and corticospinal system. The study also aims to investigate whether any other cortical mechanisms are also affected by the shoulder impingement syndrome. We will recruit 70 overhead athletes with shoulder impingement syndrome and 22 healthy control athletes. Subjects with shoulder impingement syndrome will randomly receive either scapular muscle strengthening or scapular control training. When performing the exercise, subjects in the scapular control training group will receive electromyography feedback and cues but those in the strengthening training group will not. Immediate effects of these two training protocols on scapular kinematics, muscle activation, and neurophysiological measures will be tested before and after the training. Neurophysiological measures will be tested by TMS, including corticospinal excitability, cortical inhibition, intracortical inhibition, and intracortical facilitation.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria: (patients of shoulder impingement)
Inclusion Criteria: (healthy subjects)
Exclusion Criteria (patients of shoulder impingement and healthy subjects)
Primary purpose
Allocation
Interventional model
Masking
65 participants in 3 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal