Status
Conditions
Treatments
About
The objective of this study is to determine whether augmentation of prefrontal brain excitability using noninvasive transcranial direct current stimulation (tDCS) lessens the severity of the symptom triad associated with cerebral microvascular disease (CMD); that is, slow gait, cognitive dysfunction and depressive symptoms. Investigators will complete this objective by conducting a pilot, double-blinded randomized controlled trial of a 10-day intervention of real versus sham tDCS in 40 subjects.
Full description
Biological aging, especially when coupled with cardiovascular risk factors, leads to chronic endothelial dysfunction within cerebral micro-vessels that impairs the brain's ability to meet the metabolic demands placed upon it by everyday life. This chronic mismatch between blood supply and metabolic demand often leads to cerebral microvascular disease (CMD), or the accumulation of ischemic damage within a network of frontal and subcortical regions. CMD is recognized as white matter hyperintensities on MRI scans and manifests clinically as mobility impairment, executive dysfunction and depressed affect. As 11-17% of elderly individuals present with this constellation of symptoms, and each of these symptoms is independently linked to increased morbidity and mortality, CMD is a critical yet understudied healthcare issue with rapidly-growing personal and economic costs.
There is currently no cure for CMD and trials aimed at pharmacological improvement of nonselective systemic vasodilation report no therapeutic value (Sorrond & Lipsitz, 2011). Our team, however, has demonstrated that the severity of clinical symptoms suffered by those with CMD is critically dependent upon the brain's remaining capacity to activate the appropriate cortical networks when metabolic demand is increased by the performance of various cognitive-motor tasks (Purkayastha et al., 2014; Sorond et al., 2010; Sorond et al., 2011). Therefore, investigators predict that improvement in the capacity to activate the appropriate cortical networks in response to increased metabolic demand would ameliorate the symptoms and improve the quality of life of patients with CMD.
Transcranial direct current stimulation (tDCS) enables noninvasive, selective and sustained modulation of cortical activation. tDCS works by sending low-level currents between two or more scalp electrodes, which alters brain polarity and thus, perfusion and cortical excitability. One 20-minute session of tDCS targeting the left prefrontal cortex acutely increases cortical activation during both cognitive and motor task performance in healthy adults. Investigators have demonstrated that this same stimulation improves mobility and cognitive performance in community-dwelling older adults. Moreover, repeated tDCS sessions over a one month period reduce symptoms of depression and may improve executive function in healthy individuals. This preliminary evidence suggests that tDCS may be an effective intervention for CMD; however, the impact of tDCS on this disease has not been investigated.
The study investigators ultimately aim to investigate the therapeutic efficacy of tDCS in patients with CMD by conducting a double-blind, proof-of-principle, sham-controlled trail along with extensive functional and neurophysiological assessments. In order to finalize the design and plan the implementation of this definitive trial, investigators currently aim to:
This study will provide first-of-its-kind, proof-of-principle evidence on whether tDCS provides meaningful symptomatic relief to patients with CMD. Moreover, it will inform a more definitive, larger-scale randomized controlled trial (RCT) by providing information on recruitment and retention, compliance, estimates of effect size, and the neurophysiological underpinnings of expected functional improvements. If successful, knowledge gained is also expected to spur the investigation of tDCS as treatment for many other diseases-from dementia to diabetes-that negatively impact the brain's capacity to activate appropriate cortical networks.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
19 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal