Status
Conditions
Treatments
About
Colorectal cancer (CRC) remains one of the leading causes of mortality among neoplastic diseases in the world[1] . Adequate colonoscopy based CRC screening programs have proved to be the key to reduce the risk of mortality, by early diagnosis of existing CRC and detection of pre-cancerous lesions[2-4] . Nevertheless, long-term effectiveness of colonoscopy is influenced by a range of variables that make it far from a perfect tool[5]. The effectiveness of a colonoscopy mainly depends on its quality, which in turn is dependent on the skill and expertise of the endoscopist. In fact, several studies have shown a significant adenoma miss rate of 24%-35%, especially in patients with diminutive adenomas[6,7] . These data are in line with interval cancers incidence (I-CRC), defined as the percentage of cancers diagnosed after a screening program and before the intended surveillance duration, of approximately 3%-5% [8,9].
The development of the artificial intelligence (AI) applications in the medical field has grown in interest in the past decade. Its performance on increasing automatic polyp and adenoma detection has shown promising results in order to achieve an higher ADR[10]. The use of computer aided diagnosis (CAD) for detection of polyps had initially been studied in ex vivo studies but in the last few years, with the advancement in computer aided technology and emergence of deep learning algorithms, use of AI during colonoscopy has been achieved and more studies have been undertaken [10].
Recently Fujifilm (Tokyo, Japan) has developed a new technology known as "CAD-EYE" aiming to support both colonic polyp detection and characterization during colonoscopy. This technology is now available in Europe, being compatible with the latest generation of Fujifilm endoscopes (ELUXEO Fujifilm Co.).
However, the clinical impact of CAD-EYE system in improving the adenoma detection have yet to be assessed
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
1,120 participants in 2 patient groups
Loading...
Central trial contact
Alessandro Repici, MD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal