Status
Conditions
Treatments
About
The purpose of the study is to determine whether it is possible to manage the flow of blood through blood vessels using varying levels of carbon dioxide during cardiac surgery, and what effect this has on how well the major organs of the body work.
Full description
A great number of studies have shown that MAPCAs are a real issue for these patients, who require far higher blood flows than previously suggested. However, the optimal method of CPB is still unknown. Recent research by Sakamoto et al., showed that a raised carbon dioxide (pCO2) increased brain blood flow in cyanotic patients, suggesting a noticeable decrease in aorto-pulmonary blood shunting. However, the mechanism of this action is not understood and it is unclear if this observation is an associated or causative one. Whilst the vasoconstrictive (narrowing of vessels) effect of hypoxia has been well documented, with and without high carbon dioxide, there are no reports indicating that pCO2 alone increases the narrowing of blood vessels in the lung. We hypothesize that a rise in pCO2 could cause a shift in blood flow from pulmonary to systemic circulation, either through direct constricting action on MAPCA vessels, or through a vasoconstriction of blood vessels in the lung. Furthermore, we predict the phenomenon could potentially be used to optimize the method of treatment, ensuring that vital organs receive the correct amount of blood flow during the surgical correction of these rare congenital heart diseases.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
20 participants in 2 patient groups
Loading...
Central trial contact
Richard W Issitt
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal