Status and phase
Conditions
Treatments
Study type
Funder types
Identifiers
About
Dementia caused by Alzheimer's disease affects approximately 5.6 million adults over age 65, with costs expected to rise from $307 billion to $1.5 trillion over the next 30 years. Behavioral interventions have shown promise for mitigating neurodegeneration and cognitive impairments. Sleep is a modifiable health behavior that is critical for cognition and deteriorates with advancing age and Alzheimer's disease. Thus, it is a priority to examine whether improving sleep modifies Alzheimer's disease pathophysiology and cognitive function. Extant research suggests that deeper, more consolidated sleep is positively associated with memory and executive functions and networks that underlie these processes. Preliminary studies confirm that time-in-bed restriction interventions increase sleep efficiency and non-rapid eye movement slow-wave activity (SWA) and suggest that increases in SWA are associated with improved cognitive function. SWA reflects synaptic downscaling predominantly among prefrontal connections. Downscaling of prefrontal connections with the hippocampus during sleep may help to preserve the long-range connections that support memory and cognitive function. In pre-clinical Alzheimer's disease, hyperactivation of the hippocampus is thought to be excitotoxic and is shown to leave neurons vulnerable to further amyloid deposition. Synaptic downscaling through SWA may mitigate the progression of Alzheimer's disease through these pathways. The proposed study will behaviorally increase sleep depth (SWA) through four weeks of time-in-bed restriction in older adults characterized on amyloid deposition and multiple factors associated with Alzheimer's disease risk. This study will examine whether behaviorally enhanced SWA reduces hippocampal hyperactivation, leading to improved task-related prefrontal-hippocampal connectivity, plasma amyloid levels, and cognitive function. This research addresses whether a simple, feasible, and scalable behavioral sleep intervention improves functional neuroimaging indices of excitotoxicity, Alzheimer's pathophysiology, and cognitive performance.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
116 participants in 2 patient groups
Loading...
Central trial contact
Kristine Wilckens, PhD.
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal