ClinicalTrials.Veeva

Menu

Training in Ataxia - Individuals With Degenerative Cerebellar Diseases

Columbia University logo

Columbia University

Status

Completed

Conditions

Cerebellar Ataxia

Treatments

Behavioral: Aerobic Training
Behavioral: Balance Training

Study type

Interventional

Funder types

Other
NIH

Identifiers

NCT05002218
AAAT8388
1K23NS121518-01A1 (U.S. NIH Grant/Contract)

Details and patient eligibility

About

Balance and aerobic training show promise as treatments for degenerative cerebellar diseases, but the neural effects of both training methods are unknown. The goal of this project is to evaluate how each training method impacts the brain, and particularly, the degenerating cerebellum. Various neuroimaging techniques will be used to accomplish this goal and test the hypothesis that balance training impacts brain structures outside the cerebellum whereas aerobic training causes more neuroplastic changes within the cerebellum.

Full description

Degenerative cerebellar diseases are a group of disorders that cause severe disability and can be fatal. There are currently no known disease-modifying treatments available for use, and there is a critical need to find treatments that slow disease progression and allow affected individuals to live more functional lives. Balance and aerobic training show promise as treatments for degenerative cerebellar diseases, but the neural effects of both training methods have not been thoroughly investigated. It is crucial to understand how the training impacts the brain, and particularly the cerebellum, in order to determine if one training method is better at slowing disease progression than the other. The goal of this proposal is to compare the neural effects of balance versus aerobic training in individuals with degenerative cerebellar diseases. The investigator hypothesizes that aerobic training causes neuroplastic changes within the cerebellum whereas balance training causes improvements for people with cerebellar degeneration by impacting brain structures outside the cerebellum. If this hypothesis is true, aerobic training may have more influence on disease progression than balance training as it directly impacts the cerebellum.

To investigate the hypothesis, various neuroimaging techniques will be used. In AIM 1, the investigator will compare cerebellar volume before and after the participants perform either 6-months of balance or aerobic training. In AIM 2, the investigator will investigate whether neural changes have clinical significance by correlating cerebellar volume changes with clinical measures of ataxia. Finally, for AIM 3, the investigator will use diffusion tensor imaging and resting state fMRI scans to examine how both training methods impact cerebellar microstructure and functional cerebellar connections. The investigator hopes that a detailed understanding of how each training method impacts the cerebellum will lead to more targeted training regimens with the goal of slowing disease progression of these devastating diseases.

Enrollment

64 patients

Sex

All

Ages

18+ years old

Volunteers

No Healthy Volunteers

Inclusion criteria

  • Diagnosed with spinocerebellar ataxia
  • Cerebellar atrophy on MRI
  • Prevalence of ataxia on clinical exam
  • Ability to safely ride a stationary exercise bike

Exclusion criteria

  • Other neurologic conditions
  • Heart disease
  • Cognitive impairment
  • Medical instability

Trial design

Primary purpose

Treatment

Allocation

Randomized

Interventional model

Parallel Assignment

Masking

Double Blind

64 participants in 2 patient groups

Aerobic Training
Experimental group
Description:
Participants will be given a stationary exercise bike for home use. They will be instructed to use the exercise bike five times a week for thirty-minute sessions. The exercise intensity prescription will be based on the subject's VO2max determined on pre-test day. The exercise program will start at 60% of intensity per session, and then will be increased by steps of 5% intensity every 2 sessions until participants reach 30 minutes of training at 80% intensity. Participants will be contacted weekly by e-mail or phone to answer any questions about the exercise protocol and will be instructed to log each training session. Subjects will record duration of exercise, perceived exertion, average heart rate, maximum heart rate, and distance.
Treatment:
Behavioral: Aerobic Training
Balance Training
Active Comparator group
Description:
A physical therapist will tailor a home balance training program for each participant based on pre- training capabilities. Subjects will be asked to perform exercises five times a week for thirty-minute sessions. Both dynamic and static exercises will be performed in sitting and standing positions. Exercises will start with stabilizing in a challenging static position and progress to dynamic arm and leg movements in the same or modified position. Participants will be contacted weekly by e-mail or phone to answer any questions about the exercise protocol and will be required to log their exercise effort in terms of frequency and level of balance challenge.
Treatment:
Behavioral: Balance Training

Trial documents
1

Trial contacts and locations

1

Loading...

Central trial contact

Scott Barbuto, MD

Data sourced from clinicaltrials.gov

Clinical trials

Find clinical trialsTrials by location
© Copyright 2026 Veeva Systems