Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
This study examines how muscle cells communicate with fat cells through tiny packages called extracellular vesicles (EV) during exercise. These vesicles carry important molecules that may affect how the body processes sugar and fat. The research team observed significant variability in the adipose response to exercise, and used this variability to gain further insight into the mechanism through which mature microRNA-1 (miR-1) changes in adipose tissue. The investigators selected six subjects with the highest increase in miR-1 abundance in adipose tissue after exercise and compared them with the six subjects that had the most dramatic decrease in miR-1 abundance after exercise. The research team observed that participants intrinsically vary in their ability to endocytose EV into adipose tissue. It is unclear whether this variance in receptivity is a cause or consequence of the significant difference in EV-delivery of miR-1 to adipose tissue.
Full description
This study investigates muscle-derived extracellular vesicle (EV) communication with adipose tissue and how this pathway is altered in pre-diabetes. The investigators will recruit 80 participants (40 euglycemic controls, 40 pre-diabetic) aged 18-30 years, equally distributed by sex. Pre-diabetes will be defined as impaired fasting glucose (100-125 mg/dL), impaired glucose tolerance (2-hour oral glucose tolerance test (OGTT) 140-199 mg/dL), or HbA1C 5.7-6.4%.
Following informed consent and medical screening at the Center for Clinical and Translational Sciences, participants will undergo baseline blood draw and tissue biopsies (subcutaneous adipose and vastus lateralis muscle) one hour prior to exercise. The resistance exercise protocol consists of whole-body resistance training at 80% 1RM (repetition maximum) intensity including bench press, leg press, and pull-downs. Blood samples will be collected immediately post-exercise and at 30, 60, and 90 minutes. Post-exercise biopsies will be obtained approximately 60 minutes after exercise cessation.
Laboratory analyses will include: (1) microRNA-1 (miR-1) quantification in adipose tissue by quantitative reverse transcription polymerase chain reaction (qRT-PCR) as the primary validated outcome of EV uptake; (2) fluorescently-labeled EV uptake assessment in cultured adipocytes using microscopy; (3) RNA sequencing (RNA-seq) of adipose tissue to identify transcriptomic signatures associated with EV uptake capacity; (4) primary cell culture studies using adult-derived human adipocyte stem cells (ADHASC); and (5) EV isolation and characterization using size exclusion chromatography and density gradient centrifugation.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
80 participants in 1 patient group
Loading...
Central trial contact
Yuan Wen, MD/PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal