Status
Conditions
Treatments
About
The purpose of this study is to investigate brain signals related to freezing of gait (FoG), a symptom of Parkinson's Disease, that can lead to dangerous falls. The investigators hypothesize that uncovering these signals can lead to better deep brain stimulation interventions.
Full description
Freezing of gait (FoG) is a devastating symptom of Parkinson's disease (PD) that affects more than half of the patient population. Defined as an intermittent failure to initiate or maintain effective stepping, FoG is a common cause of falls and injuries in PD. There is an unmet but pressing need to develop novel therapeutic strategies to treat disabling drug- and deep brain stimulation (DBS)-resistant FoG in PD. The objective of this research study is to uncover an electrical biomarker for FoG from human electroencephalography (EEG) to better understand the neurophysiological underpinnings of the symptom and to inform the development of clinical interventions for FoG. The central hypothesis is that EEG activity over the motor cortex will exhibit significant changes leading up to and during FoG episodes. This biomarker can then facilitate the detection of FoG events directly from scalp recordings. The rationale for the proposed research is that non-invasive detection of FoG episodes can be used to guide responsive DBS strategies to resolve the episode and prevent potential injuries. Furthermore, it is hypothesize that this biomarker will modulate when therapeutic DBS settings for FoG are turned on. Given the vast number of DBS parameter combinations that need to be tested and chronically verified, such a biomarker can significantly shorten clinical programming and prevent side effects of non-optimal stimulation settings. This study will review changes in scalp recorded EEG and gait parameters during natural FoG episodes while participants are ambulatory in an advanced gait laboratory setting using a wireless EEG amplifier with active electrodes. The modulation of the uncovered biomarker during clinical programming of DBS settings in participants with bilateral DBS implants in the globus pallidus internus (GPi) and pedunculopontine nucleus (PPN). This project is innovative as the dataset acquired will be the first of its kind in PD patients with FoG, and will open a new direction of multidisciplinary investigation that can potentially uncover the cortical mechanisms of FoG in humans and which in turn could lead to novel and effective therapies for those suffering from PD. This contribution will be significant because it will provide a critical and unmet therapeutic option for FoG and decrease morbidity and mortality associated with FoG related falls.
In summary, the following goals will be accomplished:
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
5 participants in 1 patient group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal